OmniBuds: A Sensory Earable Platform for Advanced Bio-Sensing and On-Device Machine Learning
- URL: http://arxiv.org/abs/2410.04775v1
- Date: Mon, 7 Oct 2024 06:30:59 GMT
- Title: OmniBuds: A Sensory Earable Platform for Advanced Bio-Sensing and On-Device Machine Learning
- Authors: Alessandro Montanari, Ashok Thangarajan, Khaldoon Al-Naimi, Andrea Ferlini, Yang Liu, Ananta Narayanan Balaji, Fahim Kawsar,
- Abstract summary: Sensory earables have evolved from basic audio enhancement devices into sophisticated platforms for clinical-grade health monitoring and wellbeing management.
This paper introduces OmniBuds, an advanced sensory earable platform integrating multiple biosensors and onboard computation powered by a machine learning accelerator.
- Score: 46.3331254985615
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Sensory earables have evolved from basic audio enhancement devices into sophisticated platforms for clinical-grade health monitoring and wellbeing management. This paper introduces OmniBuds, an advanced sensory earable platform integrating multiple biosensors and onboard computation powered by a machine learning accelerator, all within a real-time operating system (RTOS). The platform's dual-ear symmetric design, equipped with precisely positioned kinetic, acoustic, optical, and thermal sensors, enables highly accurate and real-time physiological assessments. Unlike conventional earables that rely on external data processing, OmniBuds leverage real-time onboard computation to significantly enhance system efficiency, reduce latency, and safeguard privacy by processing data locally. This capability includes executing complex machine learning models directly on the device. We provide a comprehensive analysis of OmniBuds' design, hardware and software architecture demonstrating its capacity for multi-functional applications, accurate and robust tracking of physiological parameters, and advanced human-computer interaction.
Related papers
- Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - A Health Monitoring System Based on Flexible Triboelectric Sensors for
Intelligence Medical Internet of Things and its Applications in Virtual
Reality [4.522609963399036]
The Internet of Medical Things (IoMT) is a platform that combines Internet of Things (IoT) technology with medical applications.
In this study, we designed a robust and intelligent IoMT system through the synergistic integration of flexible wearable triboelectric sensors and deep learning-assisted data analytics.
We embedded four triboelectric sensors into a wristband to detect and analyze limb movements in patients suffering from Parkinson's Disease (PD)
This innovative approach enabled us to accurately capture and scrutinize the subtle movements and fine motor of PD patients, thus providing insightful feedback and comprehensive assessment of the patients conditions.
arXiv Detail & Related papers (2023-09-13T01:01:16Z) - IoMT-Blockchain based Secured Remote Patient Monitoring Framework for
Neuro-Stimulation Device [0.0]
Real-time sensory data from patients may be delivered and analyzed through rapid development of wearable IoMT devices.
Data from the Internet of Things is gathered, analyzed, and stored in a single location.
Due to its decentralized nature, blockchain (BC) can alleviate these issues.
arXiv Detail & Related papers (2023-08-31T16:59:58Z) - Bio-inspired spike-based Hippocampus and Posterior Parietal Cortex
models for robot navigation and environment pseudo-mapping [52.77024349608834]
This work proposes a spike-based robotic navigation and environment pseudomapping system.
The hippocampus is in charge of maintaining a representation of an environment state map, and the PPC is in charge of local decision-making.
This is the first implementation of an environment pseudo-mapping system with dynamic learning based on a bio-inspired hippocampal memory.
arXiv Detail & Related papers (2023-05-22T10:20:34Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - An adaptable cognitive microcontroller node for fitness activity
recognition [0.0]
Wobble boards are low-cost equipment that can be used for sensorimotor training to avoid ankle injuries or as part of the rehabilitation process after an injury.
In this work, we present a portable and battery-powered microcontroller-based device applicable to a wobble board.
To reduce power consumption, we add an adaptivity layer that dynamically manages the device's hardware and software configuration to adapt it to the required operating mode at runtime.
arXiv Detail & Related papers (2022-01-13T18:06:38Z) - AMSER: Adaptive Multi-modal Sensing for Energy Efficient and Resilient
eHealth Systems [5.04685484754788]
Noisy inputs and motion artifacts during sensory data acquisition affect prediction accuracy and resilience of eHealth services.
We propose a closed-loop monitoring and control framework for multi-modal eHealth applications, AMSER, that can mitigate garbage-in garbage-out.
Our approach achieves up to 22% improvement in prediction accuracy and 5.6$times$ energy consumption reduction in the sensing phase.
arXiv Detail & Related papers (2021-12-13T00:52:33Z) - SensiX: A Platform for Collaborative Machine Learning on the Edge [69.1412199244903]
We present SensiX, a personal edge platform that stays between sensor data and sensing models.
We demonstrate its efficacy in developing motion and audio-based multi-device sensing systems.
Our evaluation shows that SensiX offers a 7-13% increase in overall accuracy and up to 30% increase across different environment dynamics at the expense of 3mW power overhead.
arXiv Detail & Related papers (2020-12-04T23:06:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.