IoMT-Blockchain based Secured Remote Patient Monitoring Framework for
Neuro-Stimulation Device
- URL: http://arxiv.org/abs/2308.16857v1
- Date: Thu, 31 Aug 2023 16:59:58 GMT
- Title: IoMT-Blockchain based Secured Remote Patient Monitoring Framework for
Neuro-Stimulation Device
- Authors: Md Sakib Ullah Sourav, Mohammad Sultan Mahmud, Md Simul Hasan
Talukder, Rejwan Bin Sulaiman, Abdullah Yasin
- Abstract summary: Real-time sensory data from patients may be delivered and analyzed through rapid development of wearable IoMT devices.
Data from the Internet of Things is gathered, analyzed, and stored in a single location.
Due to its decentralized nature, blockchain (BC) can alleviate these issues.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biomedical Engineering's Internet of Medical Things (IoMT) is helping to
improve the accuracy, dependability, and productivity of electronic equipment
in the healthcare business. Real-time sensory data from patients may be
delivered and subsequently analyzed through rapid development of wearable IoMT
devices, such as neuro-stimulation devices with a range of functions. Data from
the Internet of Things is gathered, analyzed, and stored in a single location.
However, single-point failure, data manipulation, privacy difficulties, and
other challenges might arise as a result of centralization. Due to its
decentralized nature, blockchain (BC) can alleviate these issues. The viability
of establishing a non-invasive remote neurostimulation system employing
IoMT-based transcranial Direct Current Stimulation is investigated in this work
(tDCS). A hardware-based prototype tDCS device has been developed that can be
operated over the internet using an android application. Our suggested
framework addresses the problems of IoMTBC-based systems, meets the criteria of
real-time remote patient monitoring systems, and incorporates literature best
practices in the relevant fields.
Related papers
- OmniBuds: A Sensory Earable Platform for Advanced Bio-Sensing and On-Device Machine Learning [46.3331254985615]
Sensory earables have evolved from basic audio enhancement devices into sophisticated platforms for clinical-grade health monitoring and wellbeing management.
This paper introduces OmniBuds, an advanced sensory earable platform integrating multiple biosensors and onboard computation powered by a machine learning accelerator.
arXiv Detail & Related papers (2024-10-07T06:30:59Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
The Internet of things (IoT) can significantly enhance the quality of human life, specifically in healthcare.
The human digital twin (HDT) is proposed as an innovative paradigm that can comprehensively characterize the replication of the individual human body.
HDT is envisioned to empower IoT-healthcare beyond the application of healthcare monitoring by acting as a versatile and vivid human digital testbed.
Recently, generative artificial intelligence (GAI) may be a promising solution because it can leverage advanced AI algorithms to automatically create, manipulate, and modify valuable while diverse data.
arXiv Detail & Related papers (2024-01-22T03:17:41Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - Crossed-IoT device portability of Electromagnetic Side Channel Analysis:
Challenges and Dataset [1.7811840395202345]
This study examines the impact of device variability on the accuracy and reliability of EM-SCA approaches.
We present an approach to collect the EM-SCA datasets and demonstrate the feasibility of using transfer learning to obtain more meaningful and reliable results.
arXiv Detail & Related papers (2023-10-04T19:13:39Z) - A Health Monitoring System Based on Flexible Triboelectric Sensors for
Intelligence Medical Internet of Things and its Applications in Virtual
Reality [4.522609963399036]
The Internet of Medical Things (IoMT) is a platform that combines Internet of Things (IoT) technology with medical applications.
In this study, we designed a robust and intelligent IoMT system through the synergistic integration of flexible wearable triboelectric sensors and deep learning-assisted data analytics.
We embedded four triboelectric sensors into a wristband to detect and analyze limb movements in patients suffering from Parkinson's Disease (PD)
This innovative approach enabled us to accurately capture and scrutinize the subtle movements and fine motor of PD patients, thus providing insightful feedback and comprehensive assessment of the patients conditions.
arXiv Detail & Related papers (2023-09-13T01:01:16Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Survey of Machine Learning Based Intrusion Detection Methods for
Internet of Medical Things [2.223733768286313]
Internet of Medical Things (IoMT) represents an application of the Internet of Things.
The sensitive and private nature of this data may represent a prime interest for attackers.
The use of traditional security methods on equipment that is limited in terms of storage and computing capacity is ineffective.
arXiv Detail & Related papers (2022-02-19T18:40:55Z) - An adaptive cognitive sensor node for ECG monitoring in the Internet of
Medical Things [0.7646713951724011]
The Internet of Medical Things (IoMT) paradigm is becoming mainstream in multiple clinical trials and healthcare procedures.
In this work, we explore the implementation of cognitive data analysis algorithm on resource-constrained computing platforms.
We have assessed our approach on a use-case using a convolutional neural network to classify electrocardiogram traces.
arXiv Detail & Related papers (2021-06-11T16:49:10Z) - A Novel Framework for Threat Analysis of Machine Learning-based Smart
Healthcare Systems [2.519906683279153]
We propose SHChecker, a novel threat analysis framework that integrates machine learning and formal analysis capabilities.
We implement SHChecker on a synthetic and a real dataset, which affirms that our framework can reveal potential attack vectors in an IoMT system.
arXiv Detail & Related papers (2021-03-05T04:51:02Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) is a powerful communication tool between users and systems.
Recent technological advances have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications.
arXiv Detail & Related papers (2020-01-28T10:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.