Two-dimensional non-Hermitian Su-Schrieffer-Heeger Model
- URL: http://arxiv.org/abs/2410.04812v1
- Date: Mon, 7 Oct 2024 07:49:35 GMT
- Title: Two-dimensional non-Hermitian Su-Schrieffer-Heeger Model
- Authors: Udai Prakash Tyagi, Partha Goswami,
- Abstract summary: A particle-hole symmetry protected 2D non-Hermitian Su-Schrieffer-Heeger (SSH) model is investigated.
The exceptional points occur, when the dimensionless potential magnitude and the hopping amplitudes become close to unity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A particle-hole symmetry protected 2D non-Hermitian Su-Schrieffer-Heeger (SSH) model is investigated. This version differs from the usual Hermitian version by the inclusion of gain and/or loss terms which are represented by complex on-site potentials. The exceptional points occur, when the dimensionless potential magnitude and the hopping amplitudes become close to unity, leading to the coalescence of eigenvalues and nontrivial eigenvector degeneracies. Furthermore, the vectored Zak phase quantization has been obtained and a topolectric RLC circuit has been analysed. If realized experimentally (in photonic and acoustic crystals), the quantization is expected to lead to an extended bulk-boundary correspondence.
Related papers
- $\mathcal{PT}$-Symmetry breaking in quantum spin chains with exceptional
non-Hermiticities [0.0]
We present a new set of models with non-Hermiticity generated by splitting a Hermitian term into two Jordan-normal form parts.
We find a robust PT threshold that seems insensitive to the size of the quantum spin chain.
arXiv Detail & Related papers (2023-04-20T03:03:58Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Pseudopotentials for Two-dimentional Ultracold Scattering in the
Presence of Synthetic Spin-orbit-coupling [2.6855505491859755]
We derive a pseudopotential in two dimensions (2D) with the presence of a 2D Rashba spin-orbit-coupling (SOC)
As an application, we apply our pseudopotential with the Lippmann-Schwinger equation to obtain an analytical scattering matrix.
arXiv Detail & Related papers (2022-02-11T03:52:40Z) - Gain/loss effects on spin-orbit coupled ultracold atoms in
two-dimensional optical lattices [0.5249805590164902]
We investigate the corresponding non-Hermitian tight-binding model and evaluate the gain/loss effects on various properties of the system.
We find that the conventional bulk-boundary correspondence does not break down with only on-site gain/loss due to the lack of non-Hermitian skin effect.
Given the technical accessibility of state-dependent atom loss, this model could be realized in current cold-atom experiments.
arXiv Detail & Related papers (2022-01-04T16:00:30Z) - Quantum Entanglement of Non-Hermitian Quasicrystals [7.371841894852217]
We present a class of experimentally realizable models for non-Hermitian quasicrystal chains.
We numerically determine the metal-insulator transition point.
Inspired by entanglement spectrum, we further analytically prove that a duality exists between the two phase regions.
arXiv Detail & Related papers (2021-12-26T16:17:04Z) - Dissipative dynamics in open XXZ Richardson-Gaudin models [0.0]
In specific open systems with collective dissipation the Liouvillian can be mapped to a non-Hermitian Hamiltonian.
We consider such a system where the Liouvillian is mapped to an XXZ Richardson-Gaudin integrable model and detail its exact Bethe ansatz solution.
arXiv Detail & Related papers (2021-08-03T18:00:08Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Observation of Hermitian and Non-Hermitian Diabolic Points and
Exceptional Rings in Parity-Time symmetric ZRC and RLC Dimers [62.997667081978825]
We show how appears non-Hermitian degeneracy points in the spectrum and how they are protected against a Hermitian perturbation.
This work opens a gold road for investigations on topological electrical circuits for robust transport of information at room temperature.
arXiv Detail & Related papers (2020-04-17T15:51:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.