Low-Rank Continual Personalization of Diffusion Models
- URL: http://arxiv.org/abs/2410.04891v2
- Date: Sun, 16 Feb 2025 12:55:37 GMT
- Title: Low-Rank Continual Personalization of Diffusion Models
- Authors: Ćukasz Staniszewski, Katarzyna Zaleska, Kamil Deja,
- Abstract summary: Recent personalization methods for diffusion models, such as Dreambooth and LoRA, allow fine-tuning pre-trained models to generate new concepts.
Applying these techniques across consecutive tasks in order to include, e.g., new objects or styles, leads to a forgetting of previous knowledge.
In this work, we tackle the problem of continual customization under a rigorous regime with no access to past tasks' adapters.
- Score: 3.5707423185282665
- License:
- Abstract: Recent personalization methods for diffusion models, such as Dreambooth and LoRA, allow fine-tuning pre-trained models to generate new concepts. However, applying these techniques across consecutive tasks in order to include, e.g., new objects or styles, leads to a forgetting of previous knowledge due to mutual interference between their adapters. In this work, we tackle the problem of continual customization under a rigorous regime with no access to past tasks' adapters. In such a scenario, we investigate how different adapters' initialization and merging methods can improve the quality of the final model. To that end, we evaluate the naive continual fine-tuning of customized models and compare this approach with three methods for consecutive adapters' training: sequentially merging new adapters, merging orthogonally initialized adapters, and updating only relevant task-specific weights. In our experiments, we show that the proposed techniques mitigate forgetting when compared to the naive approach. In our studies, we show different traits of selected techniques and their effect on the plasticity and stability of the continually adapted model. Repository with the code is available at https://github.com/luk-st/continual-lora.
Related papers
- Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.
Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.
We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [74.02034188307857]
Merging multiple expert models offers a promising approach for performing multi-task learning without accessing their original data.
We find existing methods inevitably discard task-specific information that, while causing conflicts, is crucial for performance.
Our approach consistently outperforms previous methods, achieving state-of-the-art results across diverse architectures and tasks in both vision and NLP domains.
arXiv Detail & Related papers (2025-01-02T12:45:21Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Class-Incremental Learning with CLIP: Adaptive Representation Adjustment and Parameter Fusion [10.322832012497722]
Class-incremental learning is a challenging problem, where the goal is to train a model that can classify data from an increasing number of classes over time.
With the advancement of vision-language pre-trained models such as CLIP, they demonstrate good generalization ability.
However, further adaptation to downstream tasks by simply fine-tuning the model leads to severe forgetting.
Most existing works with pre-trained models assume that the forgetting of old classes is uniform when the model acquires new knowledge.
arXiv Detail & Related papers (2024-07-19T09:20:33Z) - Combining Denoising Autoencoders with Contrastive Learning to fine-tune Transformer Models [0.0]
This work proposes a 3 Phase technique to adjust a base model for a classification task.
We adapt the model's signal to the data distribution by performing further training with a Denoising Autoencoder (DAE)
In addition, we introduce a new data augmentation approach for Supervised Contrastive Learning to correct the unbalanced datasets.
arXiv Detail & Related papers (2024-05-23T11:08:35Z) - Semantically-Shifted Incremental Adapter-Tuning is A Continual ViTransformer [44.10678347943115]
Class-incremental learning (CIL) aims to enable models to continuously learn new classes while overcoming catastrophic forgetting.
In this paper, we revisit different parameter-efficient tuning (PET) methods within the context of continual learning.
We observe that adapter tuning demonstrates superiority over prompt-based methods, even without parameter expansion in each learning session.
arXiv Detail & Related papers (2024-03-29T05:23:12Z) - Class Incremental Learning with Pre-trained Vision-Language Models [59.15538370859431]
We propose an approach to exploiting pre-trained vision-language models (e.g. CLIP) that enables further adaptation.
Experiments on several conventional benchmarks consistently show a significant margin of improvement over the current state-of-the-art.
arXiv Detail & Related papers (2023-10-31T10:45:03Z) - Model Merging by Uncertainty-Based Gradient Matching [70.54580972266096]
We propose a new uncertainty-based scheme to improve the performance by reducing the mismatch.
Our new method gives consistent improvements for large language models and vision transformers.
arXiv Detail & Related papers (2023-10-19T15:02:45Z) - Parameter-efficient Modularised Bias Mitigation via AdapterFusion [22.424110883305243]
We propose a novel approach to develop stand-alone debiasing functionalities separate from the model.
We introduce DAM - a debiasing approach to first encapsulate arbitrary bias mitigation functionalities into separate adapters, and then add them to the model on-demand.
Our results show that DAM improves or maintains the effectiveness of bias mitigation, avoids forgetting in a multi-attribute scenario, and maintains on-par task performance.
arXiv Detail & Related papers (2023-02-13T12:39:45Z) - Switchable Representation Learning Framework with Self-compatibility [50.48336074436792]
We propose a Switchable representation learning Framework with Self-Compatibility (SFSC)
SFSC generates a series of compatible sub-models with different capacities through one training process.
SFSC achieves state-of-the-art performance on the evaluated datasets.
arXiv Detail & Related papers (2022-06-16T16:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.