論文の概要: On the Rigour of Scientific Writing: Criteria, Analysis, and Insights
- arxiv url: http://arxiv.org/abs/2410.04981v1
- Date: Mon, 7 Oct 2024 12:22:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 00:57:50.162755
- Title: On the Rigour of Scientific Writing: Criteria, Analysis, and Insights
- Title(参考訳): 科学書記の厳格さについて : 基準・分析・洞察
- Authors: Joseph James, Chenghao Xiao, Yucheng Li, Chenghua Lin,
- Abstract要約: リグールは、結果と結果の妥当性と妥当性を保証するため、科学的研究に不可欠である。
我々は、厳格な基準を自動的に識別し定義するためのボトムアップなデータ駆動フレームワークを導入します。
我々のフレームワークはドメインに依存しないので、様々な分野の科学的厳密さの評価に合わせることができる。
- 参考スコア(独自算出の注目度): 15.055289544883534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rigour is crucial for scientific research as it ensures the reproducibility and validity of results and findings. Despite its importance, little work exists on modelling rigour computationally, and there is a lack of analysis on whether these criteria can effectively signal or measure the rigour of scientific papers in practice. In this paper, we introduce a bottom-up, data-driven framework to automatically identify and define rigour criteria and assess their relevance in scientific writing. Our framework includes rigour keyword extraction, detailed rigour definition generation, and salient criteria identification. Furthermore, our framework is domain-agnostic and can be tailored to the evaluation of scientific rigour for different areas, accommodating the distinct salient criteria across fields. We conducted comprehensive experiments based on datasets collected from two high impact venues for Machine Learning and NLP (i.e., ICLR and ACL) to demonstrate the effectiveness of our framework in modelling rigour. In addition, we analyse linguistic patterns of rigour, revealing that framing certainty is crucial for enhancing the perception of scientific rigour, while suggestion certainty and probability uncertainty diminish it.
- Abstract(参考訳): リグールは、結果と結果の再現性と妥当性を保証するため、科学的研究に不可欠である。
その重要性にもかかわらず、厳密さを計算的にモデル化する研究はほとんどなく、これらの基準が実際行われている科学論文の厳密さを効果的にシグナルや測定できるかどうかについての分析は不十分である。
本稿では,厳密な基準を自動的に識別し,定義し,科学的執筆におけるそれらの妥当性を評価するボトムアップ型データ駆動型フレームワークを提案する。
フレームワークには、厳密なキーワード抽出、詳細な厳密な定義生成、健全な基準識別が含まれる。
さらに,本フレームワークはドメインに依存しないため,異なる分野の科学的厳密さの評価に適合し,各分野の異なる塩分濃度を調節することができる。
我々は、機械学習とNLP(ICLRとACL)の2つのハイインパクトな会場から収集したデータセットに基づいて包括的な実験を行い、厳密なモデリングにおける我々のフレームワークの有効性を実証した。
さらに,厳密さの言語的パターンを分析し,フレーミング確実性は科学的厳密さの知覚を高める上で不可欠であり,確実性や確率不確実性は低下することを示した。
関連論文リスト
- The BRAVO Semantic Segmentation Challenge Results in UNCV2024 [68.20197719071436]
我々は,(1)モデルが様々な摂動にさらされたときの精度とキャリブレーションを反映したセマンティック信頼性,(2)トレーニング中に未知のオブジェクトクラスを検出する能力を測定するOOD信頼性の2つのカテゴリを定義した。
その結果、大規模事前学習と最小限のアーキテクチャ設計が、堅牢で信頼性の高いセマンティックセグメンテーションモデルを開発する上で重要であるという興味深い洞察が浮かび上がっている。
論文 参考訳(メタデータ) (2024-09-23T15:17:30Z) - The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
トークン化は、NLPパイプラインにおける重要なステップである。
NLPにおける標準表現法としての重要性は認識されているが、トークン化の理論的基盤はまだ完全には理解されていない。
本稿では,トークン化モデルの表現と解析のための統一的な形式的枠組みを提案することによって,この理論的ギャップに対処することに貢献している。
論文 参考訳(メタデータ) (2024-07-16T11:12:28Z) - Between Randomness and Arbitrariness: Some Lessons for Reliable Machine Learning at Scale [2.50194939587674]
dissertation: 信頼性を犠牲にすることなくスケーラビリティを実現するために、MLにおける偏在性のソースの定量化と緩和、不確実性推定と最適化アルゴリズムのランダム性。
論文は、機械学習の信頼性測定に関する研究が法と政策の研究と密接に結びついていることの例による実証的な証明として機能する。
論文 参考訳(メタデータ) (2024-06-13T19:29:37Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - Word-Level ASR Quality Estimation for Efficient Corpus Sampling and
Post-Editing through Analyzing Attentions of a Reference-Free Metric [5.592917884093537]
品質推定(QE)メトリクスのポテンシャルは、ASRシステムにおける説明可能な人工知能(XAI)を強化する新しいツールとして導入され、評価される。
NoRefERメトリックの能力は、単語レベルの誤りを識別し、ASR仮説を補うのに役立つ。
論文 参考訳(メタデータ) (2024-01-20T16:48:55Z) - A Reliable Knowledge Processing Framework for Combustion Science using
Foundation Models [0.0]
この研究は、多様な燃焼研究データを処理し、実験研究、シミュレーション、文献にまたがるアプローチを導入している。
開発されたアプローチは、データのプライバシと精度を最適化しながら、計算と経済の費用を最小化する。
このフレームワークは、最小限の人間の監視で、常に正確なドメイン固有の応答を提供する。
論文 参考訳(メタデータ) (2023-12-31T17:15:25Z) - Empirical evaluation of Uncertainty Quantification in
Retrieval-Augmented Language Models for Science [0.0]
本研究では,科学知識を事前学習・検索データとして組み込んだ場合,不確実性スコアがどう変化するかを検討する。
我々は,検索データが予測生成に自信を持つ傾向にあるため,科学的知識に精通した既存のALMを観察する。
また、ALMは予測を過信しており、正確な予測よりも不正確な予測を確実にしていることもわかりました。
論文 参考訳(メタデータ) (2023-11-15T20:42:11Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Learning Topic Models: Identifiability and Finite-Sample Analysis [6.181048261489101]
本稿では,特定の統合可能性に基づく潜在トピックの最大確率推定器(MLE)を提案する。
シミュレーションと実データの両方について実証的研究を行った。
論文 参考訳(メタデータ) (2021-10-08T16:35:42Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
本稿では,現実性評価指標を評価するメタ評価フレームワークGO FIGUREを紹介する。
10個の実測値のベンチマーク分析により、我々のフレームワークが堅牢で効率的な評価を提供することが明らかとなった。
また、QAメトリクスは、ドメイン間の事実性を測定する標準的なメトリクスよりも一般的に改善されているが、パフォーマンスは、質問を生成する方法に大きく依存していることも明らかにしている。
論文 参考訳(メタデータ) (2020-10-24T08:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。