Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling
- URL: http://arxiv.org/abs/2410.04988v1
- Date: Mon, 7 Oct 2024 12:42:51 GMT
- Title: Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling
- Authors: Jasmine Bayrooti, Carl Henrik Ek, Amanda Prorok,
- Abstract summary: We propose a practical, theoretically grounded approach to optimistic exploration based on Thompson sampling.
Our experiments demonstrate that optimistic exploration significantly accelerates learning in environments with sparse rewards.
Furthermore, we provide insights into when optimism is beneficial and emphasize the critical role of model uncertainty in guiding exploration.
- Score: 11.478146371965984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning complex robot behavior through interactions with the environment necessitates principled exploration. Effective strategies should prioritize exploring regions of the state-action space that maximize rewards, with optimistic exploration emerging as a promising direction aligned with this idea and enabling sample-efficient reinforcement learning. However, existing methods overlook a crucial aspect: the need for optimism to be informed by a belief connecting the reward and state. To address this, we propose a practical, theoretically grounded approach to optimistic exploration based on Thompson sampling. Our model structure is the first that allows for reasoning about joint uncertainty over transitions and rewards. We apply our method on a set of MuJoCo and VMAS continuous control tasks. Our experiments demonstrate that optimistic exploration significantly accelerates learning in environments with sparse rewards, action penalties, and difficult-to-explore regions. Furthermore, we provide insights into when optimism is beneficial and emphasize the critical role of model uncertainty in guiding exploration.
Related papers
- Random Latent Exploration for Deep Reinforcement Learning [71.88709402926415]
This paper introduces a new exploration technique called Random Latent Exploration (RLE)
RLE combines the strengths of bonus-based and noise-based (two popular approaches for effective exploration in deep RL) exploration strategies.
We evaluate it on the challenging Atari and IsaacGym benchmarks and show that RLE exhibits higher overall scores across all the tasks than other approaches.
arXiv Detail & Related papers (2024-07-18T17:55:22Z) - Preference-Guided Reinforcement Learning for Efficient Exploration [7.83845308102632]
We introduce LOPE: Learning Online with trajectory Preference guidancE, an end-to-end preference-guided RL framework.
Our intuition is that LOPE directly adjusts the focus of online exploration by considering human feedback as guidance.
LOPE outperforms several state-of-the-art methods regarding convergence rate and overall performance.
arXiv Detail & Related papers (2024-07-09T02:11:12Z) - Efficient Reinforcement Learning via Decoupling Exploration and Utilization [6.305976803910899]
Reinforcement Learning (RL) has achieved remarkable success across multiple fields and applications, including gaming, robotics, and autonomous vehicles.
In this work, our aim is to train agent with efficient learning by decoupling exploration and utilization, so that agent can escaping the conundrum of suboptimal Solutions.
The above idea is implemented in the proposed OPARL (Optimistic and Pessimistic Actor Reinforcement Learning) algorithm.
arXiv Detail & Related papers (2023-12-26T09:03:23Z) - On the Importance of Exploration for Generalization in Reinforcement
Learning [89.63074327328765]
We propose EDE: Exploration via Distributional Ensemble, a method that encourages exploration of states with high uncertainty.
Our algorithm is the first value-based approach to achieve state-of-the-art on both Procgen and Crafter.
arXiv Detail & Related papers (2023-06-08T18:07:02Z) - Deep Intrinsically Motivated Exploration in Continuous Control [0.0]
In continuous systems, exploration is often performed through undirected strategies in which parameters of the networks or selected actions are perturbed by random noise.
We adapt existing theories on animal motivational systems into the reinforcement learning paradigm and introduce a novel directed exploration strategy.
Our framework extends to larger and more diverse state spaces, dramatically improves the baselines, and outperforms the undirected strategies significantly.
arXiv Detail & Related papers (2022-10-01T14:52:16Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
We present training objectives that use offline datasets to learn a factored transition model.
Our theoretical analysis shows that the learned latent action space can boost the sample-efficiency of downstream imitation learning.
To learn the latent action space in practice, we propose TRAIL (Transition-Reparametrized Actions for Imitation Learning), an algorithm that learns an energy-based transition model.
arXiv Detail & Related papers (2021-10-27T21:05:00Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
arXiv Detail & Related papers (2021-06-04T10:03:36Z) - Learning to Plan Optimistically: Uncertainty-Guided Deep Exploration via
Latent Model Ensembles [73.15950858151594]
This paper presents Latent Optimistic Value Exploration (LOVE), a strategy that enables deep exploration through optimism in the face of uncertain long-term rewards.
We combine latent world models with value function estimation to predict infinite-horizon returns and recover associated uncertainty via ensembling.
We apply LOVE to visual robot control tasks in continuous action spaces and demonstrate on average more than 20% improved sample efficiency in comparison to state-of-the-art and other exploration objectives.
arXiv Detail & Related papers (2020-10-27T22:06:57Z) - Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning [12.76337275628074]
In this work, we propose a variational dynamic model based on the conditional variational inference to model the multimodality andgenerativeity.
We derive an upper bound of the negative log-likelihood of the environmental transition and use such an upper bound as the intrinsic reward for exploration.
Our method outperforms several state-of-the-art environment model-based exploration approaches.
arXiv Detail & Related papers (2020-10-17T09:54:51Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z) - Dynamic Subgoal-based Exploration via Bayesian Optimization [7.297146495243708]
Reinforcement learning in sparse-reward navigation environments is challenging and poses a need for effective exploration.
We propose a cost-aware Bayesian optimization approach that efficiently searches over a class of dynamic subgoal-based exploration strategies.
An experimental evaluation demonstrates that the new approach outperforms existing baselines across a number of problem domains.
arXiv Detail & Related papers (2019-10-21T04:24:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.