論文の概要: RelUNet: Relative Channel Fusion U-Net for Multichannel Speech Enhancement
- arxiv url: http://arxiv.org/abs/2410.05019v1
- Date: Mon, 7 Oct 2024 13:19:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 00:48:04.692027
- Title: RelUNet: Relative Channel Fusion U-Net for Multichannel Speech Enhancement
- Title(参考訳): RelUNet:マルチチャネル音声強調のための相対チャネル融合U-Net
- Authors: Ibrahim Aldarmaki, Thamar Solorio, Bhiksha Raj, Hanan Aldarmaki,
- Abstract要約: マルチチャネル音声強調モデル、特にU-Netアーキテクチャに基づくものは、有望な性能と一般化の可能性を示す。
本稿では,各チャネルが参照チャネルと協調して,スタックリングによって処理される,アウトセットからの相対情報を組み込むことにより,これらのモデルに新たな変更を加えることを提案する。
この入力戦略は、比較差を利用してチャネル間の情報を適応的に融合し、重要な空間情報を捕捉し、全体的な性能を向上させる。
- 参考スコア(独自算出の注目度): 25.878204820665516
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Neural multi-channel speech enhancement models, in particular those based on the U-Net architecture, demonstrate promising performance and generalization potential. These models typically encode input channels independently, and integrate the channels during later stages of the network. In this paper, we propose a novel modification of these models by incorporating relative information from the outset, where each channel is processed in conjunction with a reference channel through stacking. This input strategy exploits comparative differences to adaptively fuse information between channels, thereby capturing crucial spatial information and enhancing the overall performance. The experiments conducted on the CHiME-3 dataset demonstrate improvements in speech enhancement metrics across various architectures.
- Abstract(参考訳): ニューラルマルチチャネル音声強調モデル、特にU-Netアーキテクチャに基づくモデルは、有望な性能と一般化の可能性を示す。
これらのモデルは通常、入力チャネルを独立にエンコードし、ネットワークの後半段階でチャネルを統合する。
本稿では,各チャネルが参照チャネルと連動してスタック化処理される,アウトセットからの相対情報を組み込むことにより,これらのモデルに新たな変更を加えることを提案する。
この入力戦略は、比較差を利用してチャネル間の情報を適応的に融合し、重要な空間情報を捕捉し、全体的な性能を向上させる。
CHiME-3データセットで行った実験は、様々なアーキテクチャにおける音声強調指標の改善を実証している。
関連論文リスト
- SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion [59.96233305733875]
時系列予測は、金融、交通管理、エネルギー、医療など様々な分野で重要な役割を果たしている。
いくつかの方法は、注意やミキサーのようなメカニズムを利用して、チャネル相関をキャプチャすることでこの問題に対処する。
本稿では,効率的なモデルであるSOFTS(Series-cOre Fused Time Series forecaster)を提案する。
論文 参考訳(メタデータ) (2024-04-22T14:06:35Z) - Distributed Deep Joint Source-Channel Coding with Decoder-Only Side
Information [6.411633100057159]
本稿では,受信側のみに相関する側情報が存在する場合,ノイズの多い無線チャネル上での低遅延画像伝送について検討する。
本稿では,デコーダのみの側情報をレシーバ側の複数段階に組み込んだ新しいニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-10-06T15:17:45Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Efficient Multi-Scale Attention Module with Cross-Spatial Learning [4.046170185945849]
効率的なマルチスケールアテンション(EMA)モジュールを提案する。
チャネルごとの情報保持と計算オーバーヘッドの低減に重点を置いている。
我々は画像分類と物体検出タスクについて広範囲にわたるアブレーション研究と実験を行った。
論文 参考訳(メタデータ) (2023-05-23T00:35:47Z) - On Neural Architectures for Deep Learning-based Source Separation of
Co-Channel OFDM Signals [104.11663769306566]
周波数分割多重化(OFDM)信号を含む単一チャネル音源分離問題について検討する。
我々はOFDM構造からの洞察に基づいて、ネットワークパラメータ化に対する重要なドメインインフォームド修正を提案する。
論文 参考訳(メタデータ) (2023-03-11T16:29:13Z) - A Discriminative Channel Diversification Network for Image
Classification [21.049734250642974]
そこで本稿では,グローバルなコンテキストを改善するために,チャネル多様化ブロックと呼ばれる軽量で効果的なアテンションモジュールを提案する。
他のチャネルアテンション機構とは異なり、提案モジュールは最も識別性の高い特徴に焦点を当てている。
CIFAR-10、SVHN、Tiny-ImageNetのデータセットに対する実験により、提案モジュールはベースラインネットワークの性能を平均で3%向上することを示した。
論文 参考訳(メタデータ) (2021-12-10T23:00:53Z) - Adaptive Channel Encoding for Point Cloud Analysis [7.696435157444049]
本稿では,適応的なチャネル符号化機構を提案し,チャネル関係を捉える。
特徴のチャネル間の相互依存を明示的に符号化することで、ネットワークによって生成された表現の質を向上させる。
論文 参考訳(メタデータ) (2021-12-05T08:20:27Z) - Convolutional Neural Network optimization via Channel Reassessment
Attention module [19.566271646280978]
本稿では,Channel Reassesment (CRA) モジュールと呼ばれる新しいネットワーク最適化モジュールを提案する。
CRAモジュールは、特徴マップの空間情報とチャネルアテンションを用いて、ネットワークの表現力を高める。
ImageNetとMSデータセットの実験では、様々なネットワークにCRAモジュールを埋め込むことで、異なる評価基準下での性能が効果的に向上することが示されている。
論文 参考訳(メタデータ) (2020-10-12T11:27:17Z) - Speaker Representation Learning using Global Context Guided Channel and
Time-Frequency Transformations [67.18006078950337]
グローバルな文脈情報を用いて、重要なチャネルを強化し、有意義な時間周波数位置を再検討する。
提案されたモジュールは、人気のあるResNetベースのモデルとともに、VoxCeleb1データセットで評価される。
論文 参考訳(メタデータ) (2020-09-02T01:07:29Z) - Operation-Aware Soft Channel Pruning using Differentiable Masks [51.04085547997066]
本稿では,データ駆動型アルゴリズムを提案する。このアルゴリズムは,操作特性を利用して,ディープニューラルネットワークを異なる方法で圧縮する。
我々は大規模な実験を行い、出力ネットワークの精度で優れた性能を達成する。
論文 参考訳(メタデータ) (2020-07-08T07:44:00Z) - Channel Interaction Networks for Fine-Grained Image Categorization [61.095320862647476]
微妙なクラス間差のため、きめ細かい画像分類は困難である。
本稿では,チャネル・インタラクション・ネットワーク(CIN)を提案する。
我々のモデルは、多段階のトレーニングやテストを必要とせずに、エンドツーエンドで効率的にトレーニングすることができる。
論文 参考訳(メタデータ) (2020-03-11T11:51:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。