論文の概要: DEPT: Decoupled Embeddings for Pre-training Language Models
- arxiv url: http://arxiv.org/abs/2410.05021v2
- Date: Mon, 21 Oct 2024 02:41:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 00:48:04.683179
- Title: DEPT: Decoupled Embeddings for Pre-training Language Models
- Title(参考訳): DEPT: 事前学習型言語モデルのための分離した埋め込み
- Authors: Alex Iacob, Lorenzo Sani, Meghdad Kurmanji, William F. Shen, Xinchi Qiu, Dongqi Cai, Yan Gao, Nicholas D. Lane,
- Abstract要約: DEPTは、共有グローバル語彙に縛られることなく、モデルをトレーニングすることができる。
我々は,13億パラメータモデルの最初の語彙に依存しないフェデレーション付き多言語事前学習を行うことにより,DEPTの可能性を証明する。
- 参考スコア(独自算出の注目度): 16.84502158672086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language Model pre-training benefits from a broader data mixture to enhance performance across domains and languages. However, training on such heterogeneous text corpora is complex, requiring extensive and cost-intensive efforts. Since these data sources vary in lexical, syntactic, and semantic aspects, they cause negative interference or the "curse of multilinguality". We propose a novel pre-training framework to alleviate this curse. Our method, DEPT, decouples the embedding layers from the transformer body while simultaneously training the latter in multiple contexts. DEPT enables the model to train without being bound to a shared global vocabulary. DEPT: (1) can train robustly and effectively under significant data heterogeneity, (2) reduces the parameter count of the token embeddings by up to 80% and the communication costs by 675x for billion-scale models (3) enhances model generalization and plasticity in adapting to new languages and domains, and (4) allows training with custom optimized vocabulary per data source. We prove DEPT's potential by performing the first vocabulary-agnostic federated multilingual pre-training of a 1.3 billion-parameter model across high and low-resource languages, reducing its parameter count by 409 million.
- Abstract(参考訳): 言語モデル ドメインと言語間のパフォーマンスを向上させるために、より広範なデータ混在による事前トレーニングのメリットがある。
しかし、このような異種テキストコーパスの訓練は複雑であり、広範囲で費用がかかる。
これらのデータソースは語彙、構文、意味的な側面が異なるため、負の干渉や「多言語性の帰結」を引き起こす。
この呪いを和らげるための新しい事前学習フレームワークを提案する。
提案手法であるDEPTは,トランス体から埋め込み層を分離し,同時に複数のコンテキストで後者を訓練する。
DEPTは、共有グローバル語彙に縛られることなく、モデルをトレーニングすることができる。
DEPT:(1) 有意なデータ不均一性の下で頑健かつ効果的にトレーニングが可能であり,(2) トークン埋め込みのパラメータ数を最大80%削減し,数十億規模のモデルに対して通信コストを675倍に削減し,(3) 新たな言語やドメインに適応する際のモデルの一般化と可塑性を高める。
我々は,13億パラメトリックモデルの語彙に依存しない初回多言語事前学習を行い,そのパラメータ数を4900万に減らし,DEPTの可能性を証明する。
関連論文リスト
- Multilingual Pretraining Using a Large Corpus Machine-Translated from a Single Source Language [34.54405113575568]
1つの高品質なソース言語から機械翻訳されたテキストは、多言語モデルの事前学習に大きく貢献する。
クアトロLLMは、クローズドデータを用いて訓練された最先端の多言語モデルと一致し、より優れることを示す。
私たちは、hf.co/britllm/CuatroLLMでオープンライセンスの下で、コーパス、モデル、トレーニングパイプラインをリリースしています。
論文 参考訳(メタデータ) (2024-10-31T14:09:50Z) - Efficient Language Model Training through Cross-Lingual and Progressive
Transfer Learning [0.7612676127275795]
ほとんどのトランスフォーマー言語モデルは英語のテキストで事前訓練されている。
モデルのサイズが大きくなるにつれて、英語と他の言語のパフォーマンスギャップはさらに大きくなる。
我々はCLP-Transferと呼ばれる言語横断的・進行的トランスファー学習手法を導入する。
論文 参考訳(メタデータ) (2023-01-23T18:56:12Z) - GreenPLM: Cross-Lingual Transfer of Monolingual Pre-Trained Language
Models at Almost No Cost [7.510253441699812]
本研究では,両言語レキシコンを用いて事前学習した言語モデルを直接他の言語に翻訳するGreenPLMというフレームワークを提案する。
このアプローチを18言語のBERTモデルで検証し、このフレームワークが、トレーニングコストの高い他のフレームワークに匹敵するものであることを示す。
7つのテスト言語のうち6つで、このフレームワークは、トレーニング前の最大200倍の労力で、元のモノリンガル言語モデルより優れています。
論文 参考訳(メタデータ) (2022-11-13T18:59:15Z) - Language-Family Adapters for Low-Resource Multilingual Neural Machine
Translation [129.99918589405675]
自己超越で訓練された大規模多言語モデルは、幅広い自然言語処理タスクにおいて最先端の結果を達成する。
マルチリンガルな微調整は低リソース言語のパフォーマンスを向上させるが、モデル全体を変更する必要があるため、極めて高価である。
言語間移動を容易にするため,mBART-50上で言語ファミリーアダプタを訓練する。
論文 参考訳(メタデータ) (2022-09-30T05:02:42Z) - OneAligner: Zero-shot Cross-lingual Transfer with One Rich-Resource
Language Pair for Low-Resource Sentence Retrieval [91.76575626229824]
文検索タスク用に特別に設計されたアライメントモデルであるOneAlignerを提案する。
大規模並列多言語コーパス(OPUS-100)の全ての言語ペアで訓練すると、このモデルは最先端の結果が得られる。
実験結果から,文アライメントタスクの性能はモノリンガルおよび並列データサイズに大きく依存することがわかった。
論文 参考訳(メタデータ) (2022-05-17T19:52:42Z) - Emergent Communication Pretraining for Few-Shot Machine Translation [66.48990742411033]
我々は、参照ゲームからの創発的コミュニケーションを介してニューラルネットワークを事前訓練する。
私たちの重要な前提は、実世界の環境の粗悪な近似として、画像に基づくコミュニケーションを基盤にすることで、帰納的に自然言語学習のモデルに偏りが生じる、ということです。
論文 参考訳(メタデータ) (2020-11-02T10:57:53Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
我々は真の多言語多言語翻訳モデルを作成し、100言語のいずれかのペア間で直接翻訳できる。
大規模なマイニングによって生成された教師付きデータで、数千の言語方向をカバーするトレーニングデータセットを構築し、オープンソースにしています。
WMTのベストシングルシステムに競争力を持たせながら、非英語の方向を直接翻訳する場合、非英語モデルに焦点をあてると10 BLEU以上のゲインが得られる。
論文 参考訳(メタデータ) (2020-10-21T17:01:23Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASPは、汎用多言語ニューラルマシン翻訳モデルを事前訓練するためのアプローチである。
我々は,低,中,豊かな資源を含む多種多様な環境における42の翻訳方向の実験を行い,エキゾチックな言語対への変換を行った。
論文 参考訳(メタデータ) (2020-10-07T03:57:54Z) - Parsing with Multilingual BERT, a Small Corpus, and a Small Treebank [46.626315158735615]
事前訓練された多言語文脈表現は大きな成功を収めてきたが、事前訓練されたデータの制限のため、すべての言語品種に等しく適用されない。
このことは、ラベル付き未ラベルデータがモノリンガルモデルを効果的に訓練するにはあまりに限られている、これらのモデルに馴染みのない言語多様体にとっての課題である。
本稿では,低リソース環境に多言語モデルを適用するために,言語固有の事前学習と語彙拡張の利用を提案する。
論文 参考訳(メタデータ) (2020-09-29T16:12:52Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
ニューラルネットワーク翻訳(NMT)の多言語モデルは理論的には魅力的であるが、しばしばバイリンガルモデルに劣る。
我々は,多言語NMTが言語ペアをサポートするためにより強力なモデリング能力を必要とすることを論じる。
未知のトレーニング言語ペアの翻訳を強制するために,ランダムなオンライン翻訳を提案する。
論文 参考訳(メタデータ) (2020-04-24T17:21:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。