FreSh: Frequency Shifting for Accelerated Neural Representation Learning
- URL: http://arxiv.org/abs/2410.05050v2
- Date: Tue, 8 Oct 2024 15:21:20 GMT
- Title: FreSh: Frequency Shifting for Accelerated Neural Representation Learning
- Authors: Adam Kania, Marko Mihajlovic, Sergey Prokudin, Jacek Tabor, Przemysław Spurek,
- Abstract summary: Implicit Neural Representations (INRs) have recently gained attention as a powerful approach for continuously representing signals such as images, videos, and 3D shapes using multilayer perceptrons (MLPs)
Low-frequency details are known to exhibit a low-frequency bias, limiting their ability to capture high-frequency details accurately.
We propose frequency shifting (or FreSh) to align the frequency spectrum of the initial output with that of the target signal.
- Score: 11.175745750843484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit Neural Representations (INRs) have recently gained attention as a powerful approach for continuously representing signals such as images, videos, and 3D shapes using multilayer perceptrons (MLPs). However, MLPs are known to exhibit a low-frequency bias, limiting their ability to capture high-frequency details accurately. This limitation is typically addressed by incorporating high-frequency input embeddings or specialized activation layers. In this work, we demonstrate that these embeddings and activations are often configured with hyperparameters that perform well on average but are suboptimal for specific input signals under consideration, necessitating a costly grid search to identify optimal settings. Our key observation is that the initial frequency spectrum of an untrained model's output correlates strongly with the model's eventual performance on a given target signal. Leveraging this insight, we propose frequency shifting (or FreSh), a method that selects embedding hyperparameters to align the frequency spectrum of the model's initial output with that of the target signal. We show that this simple initialization technique improves performance across various neural representation methods and tasks, achieving results comparable to extensive hyperparameter sweeps but with only marginal computational overhead compared to training a single model with default hyperparameters.
Related papers
- Multi-scale Generative Modeling for Fast Sampling [38.570968785490514]
In the wavelet domain, we encounter unique challenges, especially the sparse representation of high-frequency coefficients.
We propose a multi-scale generative modeling in the wavelet domain that employs distinct strategies for handling low and high-frequency bands.
As supported by the theoretical analysis and experimental results, our model significantly improve performance and reduce the number of trainable parameters, sampling steps, and time.
arXiv Detail & Related papers (2024-11-14T11:01:45Z) - Synergistic Integration of Coordinate Network and Tensorial Feature for Improving Neural Radiance Fields from Sparse Inputs [26.901819636977912]
We propose a method that integrates multi-plane representation with a coordinate-based network known for strong bias toward low-frequency signals.
We demonstrate that our proposed method outperforms baseline models for both static and dynamic NeRFs with sparse inputs.
arXiv Detail & Related papers (2024-05-13T15:42:46Z) - On Optimal Sampling for Learning SDF Using MLPs Equipped with Positional
Encoding [79.67071790034609]
We devise a tool to determine the appropriate sampling rate for learning an accurate neural implicit field without undesirable side effects.
It is observed that a PE-equipped has an intrinsic frequency much higher than the highest frequency component in the PE layer.
We empirically show in the setting of SDF fitting, this recommended sampling rate is sufficient to secure accurate fitting results.
arXiv Detail & Related papers (2024-01-02T10:51:52Z) - FINER: Flexible spectral-bias tuning in Implicit NEural Representation
by Variable-periodic Activation Functions [40.80112550091512]
Implicit Neural Representation is causing a revolution in the field of signal processing.
Current INR techniques suffer from a restricted capability to tune their supported frequency set.
We propose variable-periodic activation functions, for which we propose FINER.
We demonstrate the capabilities of FINER in the contexts of 2D image fitting, 3D signed distance field representation, and 5D neural fields radiance optimization.
arXiv Detail & Related papers (2023-12-05T02:23:41Z) - Coordinate-Aware Modulation for Neural Fields [11.844561374381575]
We propose a novel way for exploiting both synthesiss and grid representations in neural fields.
We suggest a Neural Coordinate-Aware Modulation (CAM), which modulates the parameters using scale and shift features extracted from the grid representations.
arXiv Detail & Related papers (2023-11-25T10:42:51Z) - Implicit Neural Representations and the Algebra of Complex Wavelets [36.311212480600794]
Implicit neural representations (INRs) have arisen as useful methods for representing signals on Euclidean domains.
By parameterizing an image as a multilayer perceptron (MLP) on Euclidean space, INRs effectively represent signals in a way that couples and spectral features of the signal that is not obvious in the usual discrete representation.
arXiv Detail & Related papers (2023-10-01T02:01:28Z) - One-Dimensional Deep Image Prior for Curve Fitting of S-Parameters from
Electromagnetic Solvers [57.441926088870325]
Deep Image Prior (DIP) is a technique that optimized the weights of a randomly-d convolutional neural network to fit a signal from noisy or under-determined measurements.
Relative to publicly available implementations of Vector Fitting (VF), our method shows superior performance on nearly all test examples.
arXiv Detail & Related papers (2023-06-06T20:28:37Z) - Representing Noisy Image Without Denoising [91.73819173191076]
Fractional-order Moments in Radon space (FMR) is designed to derive robust representation directly from noisy images.
Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases.
arXiv Detail & Related papers (2023-01-18T10:13:29Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal.
In this work, we propose a novel frequency-guided end-to-end deep neural network (FNet) to conduct HDR fusion in the frequency domain, and Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details.
arXiv Detail & Related papers (2021-08-03T12:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.