LiDAR-RT: Gaussian-based Ray Tracing for Dynamic LiDAR Re-simulation
- URL: http://arxiv.org/abs/2412.15199v1
- Date: Thu, 19 Dec 2024 18:58:36 GMT
- Title: LiDAR-RT: Gaussian-based Ray Tracing for Dynamic LiDAR Re-simulation
- Authors: Chenxu Zhou, Lvchang Fu, Sida Peng, Yunzhi Yan, Zhanhua Zhang, Yong Chen, Jiazhi Xia, Xiaowei Zhou,
- Abstract summary: LiDAR-RT is a novel framework that supports real-time, physically accurate LiDAR re-simulation for driving scenes.
Our primary contribution is the development of an efficient and effective rendering pipeline.
Our framework supports realistic rendering with flexible scene editing operations and various sensor configurations.
- Score: 31.79143254487969
- License:
- Abstract: This paper targets the challenge of real-time LiDAR re-simulation in dynamic driving scenarios. Recent approaches utilize neural radiance fields combined with the physical modeling of LiDAR sensors to achieve high-fidelity re-simulation results. Unfortunately, these methods face limitations due to high computational demands in large-scale scenes and cannot perform real-time LiDAR rendering. To overcome these constraints, we propose LiDAR-RT, a novel framework that supports real-time, physically accurate LiDAR re-simulation for driving scenes. Our primary contribution is the development of an efficient and effective rendering pipeline, which integrates Gaussian primitives and hardware-accelerated ray tracing technology. Specifically, we model the physical properties of LiDAR sensors using Gaussian primitives with learnable parameters and incorporate scene graphs to handle scene dynamics. Building upon this scene representation, our framework first constructs a bounding volume hierarchy (BVH), then casts rays for each pixel and generates novel LiDAR views through a differentiable rendering algorithm. Importantly, our framework supports realistic rendering with flexible scene editing operations and various sensor configurations. Extensive experiments across multiple public benchmarks demonstrate that our method outperforms state-of-the-art methods in terms of rendering quality and efficiency. Our project page is at https://zju3dv.github.io/lidar-rt.
Related papers
- GS-LiDAR: Generating Realistic LiDAR Point Clouds with Panoramic Gaussian Splatting [3.376357029373187]
GS-LiDAR is a novel framework for generating realistic LiDAR point clouds with panoramic Gaussian splatting.
We introduce a novel panoramic rendering technique with explicit ray-splat intersection, guided by panoramic LiDAR supervision.
arXiv Detail & Related papers (2025-01-22T11:21:20Z) - LiHi-GS: LiDAR-Supervised Gaussian Splatting for Highway Driving Scene Reconstruction [6.428928591765432]
Gaussian Splatting (GS) facilitates real-time, rendering with an explicit 3D Gaussian representation of the scene.
GS provides faster processing and more intuitive scene editing than the implicit Neural Radiance Fields (NeRFs)
We propose a novel GS method for dynamic scene synthesis and editing with improved scene reconstruction through LiDAR supervision and support for LiDAR rendering.
arXiv Detail & Related papers (2024-12-19T22:59:55Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDAR simulation plays a crucial role in closed-loop simulation for autonomous driving.
We present LiDAR-GS, the first LiDAR Gaussian Splatting method, for real-time high-fidelity re-simulation of LiDAR sensor scans in public urban road scenes.
Our approach succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading [50.331929164207324]
We introduce DeferredGS, a method for decoupling and editing the Gaussian splatting representation using deferred shading.
Both qualitative and quantitative experiments demonstrate the superior performance of DeferredGS in novel view and editing tasks.
arXiv Detail & Related papers (2024-04-15T01:58:54Z) - Neural LiDAR Fields for Novel View Synthesis [80.45307792404685]
We present Neural Fields for LiDAR (NFL), a method to optimise a neural field scene representation from LiDAR measurements.
NFL combines the rendering power of neural fields with a detailed, physically motivated model of the LiDAR sensing process.
We show that the improved realism of the synthesized views narrows the domain gap to real scans and translates to better registration and semantic segmentation performance.
arXiv Detail & Related papers (2023-05-02T17:55:38Z) - LiDAR-NeRF: Novel LiDAR View Synthesis via Neural Radiance Fields [112.62936571539232]
We introduce a new task, novel view synthesis for LiDAR sensors.
Traditional model-based LiDAR simulators with style-transfer neural networks can be applied to render novel views.
We use a neural radiance field (NeRF) to facilitate the joint learning of geometry and the attributes of 3D points.
arXiv Detail & Related papers (2023-04-20T15:44:37Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.