GS-SDF: LiDAR-Augmented Gaussian Splatting and Neural SDF for Geometrically Consistent Rendering and Reconstruction
- URL: http://arxiv.org/abs/2503.10170v1
- Date: Thu, 13 Mar 2025 08:53:38 GMT
- Title: GS-SDF: LiDAR-Augmented Gaussian Splatting and Neural SDF for Geometrically Consistent Rendering and Reconstruction
- Authors: Jianheng Liu, Yunfei Wan, Bowen Wang, Chunran Zheng, Jiarong Lin, Fu Zhang,
- Abstract summary: We propose a unified LiDAR-visual system that synergizes Gaussian splatting with a neural signed distance field.<n>Experiments demonstrate superior reconstruction accuracy and rendering quality across diverse trajectories.
- Score: 12.293953058837653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital twins are fundamental to the development of autonomous driving and embodied artificial intelligence. However, achieving high-granularity surface reconstruction and high-fidelity rendering remains a challenge. Gaussian splatting offers efficient photorealistic rendering but struggles with geometric inconsistencies due to fragmented primitives and sparse observational data in robotics applications. Existing regularization methods, which rely on render-derived constraints, often fail in complex environments. Moreover, effectively integrating sparse LiDAR data with Gaussian splatting remains challenging. We propose a unified LiDAR-visual system that synergizes Gaussian splatting with a neural signed distance field. The accurate LiDAR point clouds enable a trained neural signed distance field to offer a manifold geometry field, This motivates us to offer an SDF-based Gaussian initialization for physically grounded primitive placement and a comprehensive geometric regularization for geometrically consistent rendering and reconstruction. Experiments demonstrate superior reconstruction accuracy and rendering quality across diverse trajectories. To benefit the community, the codes will be released at https://github.com/hku-mars/GS-SDF.
Related papers
- G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
We introduce G2SDF, a novel approach that integrates a neural implicit Signed Distance Field into the Gaussian Splatting framework.
G2SDF achieves superior quality than prior works while maintaining the efficiency of 3DGS.
arXiv Detail & Related papers (2024-11-25T20:07:07Z) - Quadratic Gaussian Splatting for Efficient and Detailed Surface Reconstruction [7.500927135156425]
Quadratic Gaussian Splatting (QGS) is a novel method that replaces disks with quadric surfaces.
QGS renders spatial curvature to guide the normal consistency term, to effectively reduce over-smoothing.
Our code willbe released as open source.
arXiv Detail & Related papers (2024-11-25T13:55:00Z) - Neural Signed Distance Function Inference through Splatting 3D Gaussians Pulled on Zero-Level Set [49.780302894956776]
It is vital to infer a signed distance function (SDF) in multi-view based surface reconstruction.
We propose a method that seamlessly merge 3DGS with the learning of neural SDFs.
Our numerical and visual comparisons show our superiority over the state-of-the-art results on the widely used benchmarks.
arXiv Detail & Related papers (2024-10-18T05:48:06Z) - ES-Gaussian: Gaussian Splatting Mapping via Error Space-Based Gaussian Completion [9.443354889048614]
Vision-based mapping often struggles with high-quality 3D reconstruction due to sparse point clouds.
We propose ES-Gaussian, an end-to-end system using a low-altitude camera and single-line LiDAR for high-quality 3D reconstruction.
arXiv Detail & Related papers (2024-10-09T07:09:29Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDAR simulation plays a crucial role in closed-loop simulation for autonomous driving.
We present LiDAR-GS, the first LiDAR Gaussian Splatting method, for real-time high-fidelity re-simulation of LiDAR sensor scans in public urban road scenes.
Our approach succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - GS-Octree: Octree-based 3D Gaussian Splatting for Robust Object-level 3D Reconstruction Under Strong Lighting [4.255847344539736]
We introduce a novel approach that combines octree-based implicit surface representations with Gaussian splatting.
Our method, which leverages the distribution of 3D Gaussians with SDFs, reconstructs more accurate geometry, particularly in images with specular highlights caused by strong lighting.
arXiv Detail & Related papers (2024-06-26T09:29:56Z) - Outdoor Scene Extrapolation with Hierarchical Generative Cellular Automata [70.9375320609781]
We aim to generate fine-grained 3D geometry from large-scale sparse LiDAR scans, abundantly captured by autonomous vehicles (AV)
We propose hierarchical Generative Cellular Automata (hGCA), a spatially scalable 3D generative model, which grows geometry with local kernels following, in a coarse-to-fine manner, equipped with a light-weight planner to induce global consistency.
arXiv Detail & Related papers (2024-06-12T14:56:56Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) has proven to be highly effective in novel view synthesis, achieving high-quality and real-time rendering.
Our work introduces a Chamfer distance error comparable to NeuraLangelo on the DTU dataset and maintains similar computational efficiency as the original 3D GS methods.
arXiv Detail & Related papers (2024-06-03T15:56:58Z) - GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction [5.112375652774415]
We propose a unified optimization framework that integrates neural signed distance fields (SDFs) with 3DGS for accurate geometry reconstruction and real-time rendering.
Our method achieves state-of-the-art performance in both surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-05-30T03:46:59Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking.<n>We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.<n>We demonstrate that our differentiable terms allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
arXiv Detail & Related papers (2024-03-26T17:21:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.