AlphaRouter: Quantum Circuit Routing with Reinforcement Learning and Tree Search
- URL: http://arxiv.org/abs/2410.05115v1
- Date: Mon, 7 Oct 2024 15:10:54 GMT
- Title: AlphaRouter: Quantum Circuit Routing with Reinforcement Learning and Tree Search
- Authors: Wei Tang, Yiheng Duan, Yaroslav Kharkov, Rasool Fakoor, Eric Kessler, Yunong Shi,
- Abstract summary: This paper introduces a solution that integrates Monte Carlo Tree Search (MCTS) with Reinforcement Learning (RL)
Our router, called Alpha RL, outperforms the current state-of-the-art routing methods and generates quantum programs with up to $20%$ less routing overhead.
- Score: 14.46041554295883
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum computers have the potential to outperform classical computers in important tasks such as optimization and number factoring. They are characterized by limited connectivity, which necessitates the routing of their computational bits, known as qubits, to specific locations during program execution to carry out quantum operations. Traditionally, the NP-hard optimization problem of minimizing the routing overhead has been addressed through sub-optimal rule-based routing techniques with inherent human biases embedded within the cost function design. This paper introduces a solution that integrates Monte Carlo Tree Search (MCTS) with Reinforcement Learning (RL). Our RL-based router, called AlphaRouter, outperforms the current state-of-the-art routing methods and generates quantum programs with up to $20\%$ less routing overhead, thus significantly enhancing the overall efficiency and feasibility of quantum computing.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - A Genetic Approach to Minimising Gate and Qubit Teleportations for Multi-Processor Quantum Circuit Distribution [6.207327488572861]
Distributed Quantum Computing (DQC) provides a means for scaling available quantum computation by interconnecting multiple quantum processor units (QPUs)
A key challenge in this domain is efficiently allocating logical qubits from quantum circuits to the physical qubits within QPUs, a task known to be NP-hard.
Traditional approaches have sought to reduce the number of required Bell pairs for executing non-local CNOT operations, a form of gate teleportation.
We introduce a novel meta-heuristic algorithm to minimise the network cost of executing a quantum circuit.
arXiv Detail & Related papers (2024-05-09T16:03:41Z) - beSnake: A routing algorithm for scalable spin-qubit architectures [1.351147045576948]
We introduce beSnake, a novel algorithm designed to address the intricate qubit routing challenges in scalable spin-qubit architectures.
BeSnake effectively manages the restrictions created by diverse topologies and qubit positions acting as obstacles, for up to 72% qubit density.
Our simulations demonstrate beSnake's advantage over an existing routing solution on random circuits and real quantum algorithms with up to $1,000$ qubits.
arXiv Detail & Related papers (2024-03-24T11:08:40Z) - Spatio-Temporal Characterization of Qubit Routing in
Connectivity-Constrained Quantum Processors [1.3230570759583702]
This work presents a comparative analysis of the resulting communication overhead among three processor topologies.
According to performance metrics of communication-to-computation ratio, mean qubit hotspotness, and temporal burstiness, the square lattice layout is favourable for quantum computer architectures at a scale.
arXiv Detail & Related papers (2024-02-01T10:16:04Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
Entanglement routing establishes remote entanglement connection between two arbitrary nodes.
We propose purification-enabled entanglement routing designs to provide fidelity guarantee for multiple Source-Destination (SD) pairs in quantum networks.
arXiv Detail & Related papers (2021-11-15T14:07:22Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
We study the interplay between pruning and quantization during the training of neural networks for ultra low latency applications.
We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task.
arXiv Detail & Related papers (2021-02-22T19:00:05Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Effective routing design for remote entanglement generation on quantum
networks [6.695045642641268]
Efficient entanglement generation on quantum networks with relatively limited resources such as quantum memories is essential to fully realize the network's capabilities.
We propose an effective routing scheme to enable automatic responses for multiple requests of entanglement generation between source-terminal stations.
Multiple connection paths are exploited for each connection request while entanglement fidelity is ensured for each path by performing entanglement purification.
arXiv Detail & Related papers (2020-01-07T18:16:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.