Spatio-Temporal Characterization of Qubit Routing in
Connectivity-Constrained Quantum Processors
- URL: http://arxiv.org/abs/2402.00469v1
- Date: Thu, 1 Feb 2024 10:16:04 GMT
- Title: Spatio-Temporal Characterization of Qubit Routing in
Connectivity-Constrained Quantum Processors
- Authors: Sahar Ben Rached, Carmen G. Almudever, Eduard Alarcon, Sergi Abadal
- Abstract summary: This work presents a comparative analysis of the resulting communication overhead among three processor topologies.
According to performance metrics of communication-to-computation ratio, mean qubit hotspotness, and temporal burstiness, the square lattice layout is favourable for quantum computer architectures at a scale.
- Score: 1.3230570759583702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing efficient quantum processor topologies is pivotal for advancing
scalable quantum computing architectures. The communication overhead, a
critical factor affecting the execution fidelity of quantum circuits, arises
from inevitable qubit routing that brings interacting qubits into physical
proximity by the means of serial SWAP gates to enable the direct two-qubit gate
application. Characterizing the qubit movement across the processor is crucial
for tailoring techniques for minimizing the SWAP gates. This work presents a
comparative analysis of the resulting communication overhead among three
processor topologies: star, heavy-hexagon lattice, and square lattice
topologies, according to performance metrics of communication-to-computation
ratio, mean qubit hotspotness, and temporal burstiness, showcasing that the
square lattice layout is favourable for quantum computer architectures at a
scale.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Genetic Approach to Minimising Gate and Qubit Teleportations for Multi-Processor Quantum Circuit Distribution [6.207327488572861]
Distributed Quantum Computing (DQC) provides a means for scaling available quantum computation by interconnecting multiple quantum processor units (QPUs)
A key challenge in this domain is efficiently allocating logical qubits from quantum circuits to the physical qubits within QPUs, a task known to be NP-hard.
Traditional approaches have sought to reduce the number of required Bell pairs for executing non-local CNOT operations, a form of gate teleportation.
We introduce a novel meta-heuristic algorithm to minimise the network cost of executing a quantum circuit.
arXiv Detail & Related papers (2024-05-09T16:03:41Z) - Characterizing the Inter-Core Qubit Traffic in Large-Scale Quantum Modular Architectures [2.465579331213113]
We present a pioneering characterization of the era of monolithic-temporal inter-core qubit traffic in large-scale circuits.
The programs are executed on an all-to-all connected-core architecture that supports up to around 1000 qubits.
Based on the showcased results, we provide a set of guidelines to improve mapping quantum circuits to multi-core processors, and lay the foundations of benchmarking large-scale multi-core architectures.
arXiv Detail & Related papers (2023-10-03T09:54:41Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Characterizing crosstalk of superconducting transmon processors [0.0]
We show how to efficiently and systematically characterize the magnitude of crosstalk effects on an entire quantum chip.
We propose more accurate means to simulate noisy quantum hardware by devising an appropriate crosstalk-aware noise model.
arXiv Detail & Related papers (2023-03-24T16:11:28Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Scalable High-Performance Fluxonium Quantum Processor [0.0]
We propose a superconducting quantum information processor based on compact high-coherence fluxoniums with suppressed crosstalk.
We numerically investigate the cross resonance controlled-NOT and the differential AC-Stark controlled-Z operations, revealing low gate error for qubit-qubit detuning bandwidth of up to 1 GHz.
arXiv Detail & Related papers (2022-01-23T21:49:04Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Using Reinforcement Learning to Perform Qubit Routing in Quantum
Compilers [0.0]
We propose a qubit routing procedure that uses a modified version of the deep Q-learning paradigm.
The system is able to outperform the qubit routing procedures from two of the most advanced quantum compilers currently available.
arXiv Detail & Related papers (2020-07-31T10:57:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.