Last Iterate Convergence in Monotone Mean Field Games
- URL: http://arxiv.org/abs/2410.05127v2
- Date: Tue, 8 Oct 2024 03:50:40 GMT
- Title: Last Iterate Convergence in Monotone Mean Field Games
- Authors: Noboru Isobe, Kenshi Abe, Kaito Ariu,
- Abstract summary: Mean Field Game (MFG) is a framework utilized to model and approximate the behavior of a large number of agents.
We propose the use of a simple, proximal-point-type algorithm to compute equilibria for MFGs.
We provide the first last-iterate convergence guarantee under the Lasry--Lions-type monotonicity condition.
- Score: 5.407319151576265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mean Field Game (MFG) is a framework utilized to model and approximate the behavior of a large number of agents, and the computation of equilibria in MFG has been a subject of interest. Despite the proposal of methods to approximate the equilibria, algorithms where the sequence of updated policy converges to equilibrium, specifically those exhibiting last-iterate convergence, have been limited. We propose the use of a simple, proximal-point-type algorithm to compute equilibria for MFGs. Subsequently, we provide the first last-iterate convergence guarantee under the Lasry--Lions-type monotonicity condition. We further employ the Mirror Descent algorithm for the regularized MFG to efficiently approximate the update rules of the proximal point method for MFGs. We demonstrate that the algorithm can approximate with an accuracy of $\varepsilon$ after $\mathcal{O}({\log(1/\varepsilon)})$ iterations. This research offers a tractable approach for large-scale and large-population games.
Related papers
- Learning Regularized Monotone Graphon Mean-Field Games [155.38727464526923]
We study fundamental problems in regularized Graphon Mean-Field Games (GMFGs)
We establish the existence of a Nash Equilibrium (NE) of any $lambda$-regularized GMFG.
We propose provably efficient algorithms to learn the NE in weakly monotone GMFGs.
arXiv Detail & Related papers (2023-10-12T07:34:13Z) - The Power of Regularization in Solving Extensive-Form Games [22.557806157585834]
We propose a series of new algorithms based on regularizing the payoff functions of the game.
In particular, we first show that dilated optimistic mirror descent (DOMD) can achieve a fast $tilde O(T)$ last-iterate convergence.
We also show that Reg-CFR, with a variant of optimistic mirror descent algorithm as regret-minimizer, can achieve $O(T1/4)$ best-iterate, and $O(T3/4)$ average-iterate convergence rate.
arXiv Detail & Related papers (2022-06-19T22:10:38Z) - Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms [14.174806471635403]
We consider approximations of sampling algorithms, such as Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM) for Interacting Particle Dynamcs (IPD)
We observe that the noise introduced by the approximation is nearly Gaussian due to the Central Limit Theorem (CLT) while the driving Brownian motion is exactly Gaussian.
We harness this structure to absorb the approximation error inside the diffusion process, and obtain improved convergence guarantees for these algorithms.
arXiv Detail & Related papers (2022-06-08T10:17:40Z) - Policy Optimization for Markov Games: Unified Framework and Faster
Convergence [81.3266426402464]
We show that the state-wise average policy of this algorithm converges to an approximate Nash equilibrium (NE) of the game.
We extend this algorithm to multi-player general Markov Games and show a $mathcalwidetildeO(T-1/2)$ convergence rate to Correlated Equilibria (CCE)
arXiv Detail & Related papers (2022-06-06T14:23:13Z) - Hessian Averaging in Stochastic Newton Methods Achieves Superlinear
Convergence [69.65563161962245]
We consider a smooth and strongly convex objective function using a Newton method.
We show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage.
arXiv Detail & Related papers (2022-04-20T07:14:21Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z) - On the Last Iterate Convergence of Momentum Methods [32.60494006038902]
We prove for the first time that for any constant momentum factor, there exists a Lipschitz and convex function for which the last iterate suffers from an error.
We show that in the setting with convex and smooth functions, our new SGDM algorithm automatically converges at a rate of $O(fraclog TT)$.
arXiv Detail & Related papers (2021-02-13T21:16:16Z) - Approximately Solving Mean Field Games via Entropy-Regularized Deep
Reinforcement Learning [33.77849245250632]
We show that all discrete-time finite MFGs with non-constant fixed point operators fail to be contractive as typically assumed in existing MFG literature.
We obtain provable convergence to approximate fixed points where existing methods fail, and reach the original goal of approximate Nash equilibria.
arXiv Detail & Related papers (2021-02-02T16:22:07Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
This paper analyzes the trajectories of gradient descent (SGD)
We show that SGD avoids saddle points/manifolds with $1$ for strict step-size policies.
arXiv Detail & Related papers (2020-06-19T14:11:26Z) - Non-asymptotic Convergence of Adam-type Reinforcement Learning
Algorithms under Markovian Sampling [56.394284787780364]
This paper provides the first theoretical convergence analysis for two fundamental RL algorithms of policy gradient (PG) and temporal difference (TD) learning.
Under general nonlinear function approximation, PG-AMSGrad with a constant stepsize converges to a neighborhood of a stationary point at the rate of $mathcalO(log T/sqrtT)$.
Under linear function approximation, TD-AMSGrad with a constant stepsize converges to a neighborhood of the global optimum at the rate of $mathcalO(log T/sqrtT
arXiv Detail & Related papers (2020-02-15T00:26:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.