Nonadiabatic Quantum Dynamics of Molecules Scattering from Metal Surfaces
- URL: http://arxiv.org/abs/2410.05142v1
- Date: Mon, 7 Oct 2024 15:54:36 GMT
- Title: Nonadiabatic Quantum Dynamics of Molecules Scattering from Metal Surfaces
- Authors: Riley J. Preston, Yaling Ke, Samuel L. Rudge, Nils Hertl, Raffaele Borrelli, Reinhard J. Maurer, Michael Thoss,
- Abstract summary: Nonadiabatic coupling between electrons and molecular motion at metal surfaces leads to energy dissipation.
We present a theoretical approach to the scattering of molecules from metal surfaces that incorporates all nonadiabatic and quantum nuclear effects.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nonadiabatic coupling between electrons and molecular motion at metal surfaces leads to energy dissipation and dynamical steering effects during chemical surface dynamics. We present a theoretical approach to the scattering of molecules from metal surfaces that incorporates all nonadiabatic and quantum nuclear effects due to the coupling of the molecular degrees of freedom to the electrons in the metal. This is achieved with the hierarchical equations of motion (HEOM) approach combined with a matrix product state representation in twin space. The method is applied to the scattering of nitric oxide from Au(111), for which strongly nonadiabatic energy loss during scattering has been experimentally observed, thus presenting a significant theoretical challenge. Since the HEOM approach treats the molecule-surface coupling exactly, it captures the interplay between nonadiabatic and quantum nuclear effects. Finally, the data obtained by the HEOM approach is used as a rigorous benchmark to assess various mixed quantum-classical methods, from which we derive insights into the mechanisms of energy dissipation and the suitable working regimes of each method.
Related papers
- Generalized energy gap law: An open system dynamics approach to non-adiabatic phenomena in molecules [0.0]
Non-adiabatic molecular phenomena govern the fate of virtually all photo-physical and photochemical processes.
A simple and elegant description, the energy gap law, was derived five decades ago.
We revisit and extend this theory to account for crucial aspects such as vibrational relaxation, dephasing, and radiative loss.
arXiv Detail & Related papers (2024-05-14T15:59:58Z) - Simulating Spin-Orbit Coupling With Quasidegenerate N-Electron Valence
Perturbation Theory [77.34726150561087]
We present the first implementation of spin-orbit coupling effects in SO-QDNEVPT2.
The accuracy of these methods is tested for the group 14 and 16 hydrides, 3d and 4d transition metal ions, and two actinide dioxides.
arXiv Detail & Related papers (2022-11-11T20:03:37Z) - Discrimination of Chiral Molecules through Holonomic Quantum Coherent
Control [6.746674500183388]
A novel optical method for distinguishing chiral molecules is proposed and validated within a quantum simulator employing a trapped-ion qudit.
Our method achieves highly efficient, non-adiabatic, and robust detection and separation of chiral molecules.
arXiv Detail & Related papers (2022-10-21T05:33:57Z) - Optomechanical Effects in Nanocavity-enhanced Resonant Raman Scattering
of a Single Molecule [7.8701096149524865]
We address the optomechanical effects in surface-enhanced resonant Raman scattering (SERRS) from a single molecule in a nano-particle on mirror (NPoM) nanocavity.
We develop a quantum master equation theory, which combines macroscopic quantum electrodynamics and electron-vibration interaction within the framework of open quantum system theory.
We use electromagnetic simulations and time-dependent density functional theory calculations to study the SERRS of a methylene blue molecule in a realistic NPoM nanocavity.
arXiv Detail & Related papers (2022-10-06T02:12:07Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z) - Understanding Radiative Transitions and Relaxation Pathways in
Plexcitons [0.0]
Molecular aggregates on plasmonic nanoparticles have emerged as attractive systems for the studies of cavity quantum electrodynamics.
We show that while the metal is responsible for destroying the coherence of the excitation, the molecular aggregate significantly participates in dissipating the energy.
We show that the dynamics beyond a few femtoseconds has to be cast in the language of hot electron distributions and excitons.
arXiv Detail & Related papers (2020-02-13T17:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.