Are causal effect estimations enough for optimal recommendations under multitreatment scenarios?
- URL: http://arxiv.org/abs/2410.05177v1
- Date: Mon, 7 Oct 2024 16:37:35 GMT
- Title: Are causal effect estimations enough for optimal recommendations under multitreatment scenarios?
- Authors: Sherly Alfonso-Sánchez, Kristina P. Sendova, Cristián Bravo,
- Abstract summary: It is essential to include a causal effect estimation analysis to compare potential outcomes under different treatments or controls.
We propose a comprehensive methodology for multitreatment selection.
- Score: 2.4578723416255754
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: When making treatment selection decisions, it is essential to include a causal effect estimation analysis to compare potential outcomes under different treatments or controls, assisting in optimal selection. However, merely estimating individual treatment effects may not suffice for truly optimal decisions. Our study addressed this issue by incorporating additional criteria, such as the estimations' uncertainty, measured by the conditional value-at-risk, commonly used in portfolio and insurance management. For continuous outcomes observable before and after treatment, we incorporated a specific prediction condition. We prioritized treatments that could yield optimal treatment effect results and lead to post-treatment outcomes more desirable than pretreatment levels, with the latter condition being called the prediction criterion. With these considerations, we propose a comprehensive methodology for multitreatment selection. Our approach ensures satisfaction of the overlap assumption, crucial for comparing outcomes for treated and control groups, by training propensity score models as a preliminary step before employing traditional causal models. To illustrate a practical application of our methodology, we applied it to the credit card limit adjustment problem. Analyzing a fintech company's historical data, we found that relying solely on counterfactual predictions was inadequate for appropriate credit line modifications. Incorporating our proposed additional criteria significantly enhanced policy performance.
Related papers
- Uncertainty-Aware Optimal Treatment Selection for Clinical Time Series [4.656302602746229]
This paper introduces a novel method integrating counterfactual estimation techniques and uncertainty quantification.
We validate our method using two simulated datasets, one focused on the cardiovascular system and the other on COVID-19.
Our findings indicate that our method has robust performance across different counterfactual estimation baselines.
arXiv Detail & Related papers (2024-10-11T13:56:25Z) - Learning Robust Treatment Rules for Censored Data [14.95510487866686]
We propose two criteria for estimating optimal treatment rules.
We show improved performance compared to existing methods.
We also demonstrate the proposed method using AIDS clinical data.
arXiv Detail & Related papers (2024-08-17T09:58:58Z) - Optimal Treatment Regimes for Proximal Causal Learning [7.672587258250301]
We propose a novel optimal individualized treatment regime based on outcome and treatment confounding bridges.
We show that the value function of this new optimal treatment regime is superior to that of existing ones in the literature.
arXiv Detail & Related papers (2022-12-19T14:29:25Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Causal Modeling of Policy Interventions From Sequences of Treatments and
Outcomes [5.107614397012659]
Data-driven decision-making requires the ability to predict what happens if a policy is changed.
Existing methods that predict how the outcome evolves assume that the tentative sequences of future treatments are fixed in advance.
In practice, the treatments are determinedally by a policy and may depend on the efficiency of previous treatments.
arXiv Detail & Related papers (2022-09-09T06:50:37Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects.
In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE)
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - Probabilistic Prediction for Binary Treatment Choice: with focus on
personalized medicine [0.0]
This paper extends my research applying statistical decision theory to treatment choice with sample data.
The specific new contribution is to study as-if optimization using estimates of illness probabilities in clinical choice between surveillance and aggressive treatment.
arXiv Detail & Related papers (2021-10-02T18:34:59Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
Historical data about disease outcomes can be integrated into the analysis of clinical trials in many ways.
We build on existing literature that uses prognostic scores from a predictive model to increase the efficiency of treatment effect estimates.
arXiv Detail & Related papers (2020-12-24T05:19:03Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.