論文の概要: Research on short-term load forecasting model based on VMD and IPSO-ELM
- arxiv url: http://arxiv.org/abs/2410.05300v1
- Date: Fri, 4 Oct 2024 09:20:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 19:37:51.437053
- Title: Research on short-term load forecasting model based on VMD and IPSO-ELM
- Title(参考訳): VMDとIPSO-ELMに基づく短期負荷予測モデルに関する研究
- Authors: Qiang Xie,
- Abstract要約: 本研究では,変分モード分解(VMD)と改善粒子群最適化(IPSO)アルゴリズムを統合し,エクストリーム学習マシン(ELM)を最適化する高度な統合予測手法を提案する。
シミュレーションの結果,提案手法は従来のELM法, PSO-ELM法, PSO-ELM法と比較して予測精度と収束速度を著しく向上することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To enhance the accuracy of power load forecasting in wind farms, this study introduces an advanced combined forecasting method that integrates Variational Mode Decomposition (VMD) with an Improved Particle Swarm Optimization (IPSO) algorithm to optimize the Extreme Learning Machine (ELM). Initially, the VMD algorithm is employed to perform high-precision modal decomposition of the original power load data, which is then categorized into high-frequency and low-frequency sequences based on mutual information entropy theory. Subsequently, this research profoundly modifies the traditional multiverse optimizer by incorporating Tent chaos mapping, exponential travel distance rate, and an elite reverse learning mechanism, developing the IPSO-ELM prediction model. This model independently predicts the high and low-frequency sequences and reconstructs the data to achieve the final forecasting results. Simulation results indicate that the proposed method significantly improves prediction accuracy and convergence speed compared to traditional ELM, PSO-ELM, and PSO-ELM methods.
- Abstract(参考訳): 本研究では,風力発電所における電力負荷予測の精度を高めるために,変分モード分解(VMD)を改良粒子群最適化(IPSO)アルゴリズムと統合し,エクストリーム学習マシン(ELM)を最適化する高度な統合予測手法を提案する。
当初、VMDアルゴリズムは、元の電力負荷データの高精度なモーダル分解を行うために用いられ、その後、相互情報エントロピー理論に基づいて高周波および低周波列に分類される。
その後、テントカオスマッピング、指数的走行距離率、エリート逆学習機構を組み込むことにより、従来のマルチバースオプティマイザを深く改良し、IPSO-ELM予測モデルを開発した。
このモデルは、独立して高頻度および低周波のシーケンスを予測し、最終的な予測結果を達成するためにデータを再構成する。
シミュレーションの結果,提案手法は従来のELM法, PSO-ELM法, PSO-ELM法と比較して予測精度と収束速度を著しく向上することがわかった。
関連論文リスト
- Initialization Method for Factorization Machine Based on Low-Rank Approximation for Constructing a Corrected Approximate Ising Model [1.194799054956877]
Isingモデルは、機械学習モデルであるFacterization Machine(FM)を用いて、高い精度で近似される。
FMQAの最適化性能は、ウォームスタート方式の実装により向上することが期待されている。
論文 参考訳(メタデータ) (2024-10-16T17:06:55Z) - Enhancing Channel Estimation in Quantized Systems with a Generative Prior [9.486021754040483]
本稿では,ガウス混合モデル(GMM)を前駆体として利用し,伝搬環境のチャネル分布を推定する。
提案手法は,高分解能システムへの適応性を示す。
論文 参考訳(メタデータ) (2024-04-26T09:27:59Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - AI enhanced data assimilation and uncertainty quantification applied to
Geological Carbon Storage [0.0]
本稿では,Surrogate-based hybrid ESMDA (SH-ESMDA)を導入し,Surrogate-based hybrid ESMDA (SH-ESMDA)について述べる。
また,SurrogateをベースとしたHybrid RML(SH-RML)も導入する。
以上の結果より,SH-RMLは従来のESMDAと比較して不確実性が高いことが示唆された。
論文 参考訳(メタデータ) (2024-02-09T00:24:46Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
高次元データに基づくエネルギーベースモデル(EBM)の訓練は、困難かつ時間を要する可能性がある。
EBMと、GANや拡散モデルのような他の生成フレームワークとの間には、サンプル品質に顕著なギャップがある。
本研究では,協調拡散回復可能性 (CDRL) を提案する。
論文 参考訳(メタデータ) (2023-09-10T22:05:24Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
本稿では,遺伝的アルゴリズム (GA), 微分進化 (DE), 粒子群最適化 (PSO) のメタヒューリスティックアルゴリズムの適用について検討する。
平均二乗誤差(MSE)や平均絶対パーセンテージ誤差(MAPE)といった指標に基づいて天気予報の性能を評価する。
論文 参考訳(メタデータ) (2023-09-05T22:13:35Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Adaptive Latent Factor Analysis via Generalized Momentum-Incorporated
Particle Swarm Optimization [6.2303427193075755]
勾配降下(SGD)アルゴリズムは,高次元および不完全行列上に潜在因子分析(LFA)モデルを構築するための効果的な学習戦略である。
粒子群最適化(PSO)アルゴリズムは、SGDベースのLFAモデルのハイパーパラメータ(学習率と正規化係数、自己適応)を作成するために一般的に用いられる。
本論文は, 各粒子の進化過程に, 早期収束を避けるために, より歴史的情報を取り入れたものである。
論文 参考訳(メタデータ) (2022-08-04T03:15:07Z) - Score-Guided Intermediate Layer Optimization: Fast Langevin Mixing for
Inverse Problem [97.64313409741614]
ランダム重み付きDNNジェネレータを反転させるため,Langevinアルゴリズムの定常分布を高速に混合し,特徴付ける。
本稿では,事前学習した生成モデルの潜時空間における後部サンプリングを提案する。
論文 参考訳(メタデータ) (2022-06-18T03:47:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。