Output Scouting: Auditing Large Language Models for Catastrophic Responses
- URL: http://arxiv.org/abs/2410.05305v1
- Date: Fri, 4 Oct 2024 18:18:53 GMT
- Title: Output Scouting: Auditing Large Language Models for Catastrophic Responses
- Authors: Andrew Bell, Joao Fonseca,
- Abstract summary: Recent high profile incidents in which the use of Large Language Models (LLMs) resulted in significant harm to individuals have brought about a growing interest in AI safety.
One reason LLM safety issues occur is that models often have at least some non-zero probability of producing harmful outputs.
We propose output scouting: an approach that aims to generate semantically fluent outputs to a given prompt matching any target probability distribution.
- Score: 1.5703117863274307
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent high profile incidents in which the use of Large Language Models (LLMs) resulted in significant harm to individuals have brought about a growing interest in AI safety. One reason LLM safety issues occur is that models often have at least some non-zero probability of producing harmful outputs. In this work, we explore the following scenario: imagine an AI safety auditor is searching for catastrophic responses from an LLM (e.g. a "yes" responses to "can I fire an employee for being pregnant?"), and is able to query the model a limited number times (e.g. 1000 times). What is a strategy for querying the model that would efficiently find those failure responses? To this end, we propose output scouting: an approach that aims to generate semantically fluent outputs to a given prompt matching any target probability distribution. We then run experiments using two LLMs and find numerous examples of catastrophic responses. We conclude with a discussion that includes advice for practitioners who are looking to implement LLM auditing for catastrophic responses. We also release an open-source toolkit (https://github.com/joaopfonseca/outputscouting) that implements our auditing framework using the Hugging Face transformers library.
Related papers
- Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models [79.76293901420146]
Large Language Models (LLMs) are employed across various high-stakes domains, where the reliability of their outputs is crucial.
Our research investigates the fragility of uncertainty estimation and explores potential attacks.
We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output.
arXiv Detail & Related papers (2024-07-15T23:41:11Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
Task drift allows attackers to exfiltrate data or influence the LLM's output for other users.
We show that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set.
We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions.
arXiv Detail & Related papers (2024-06-02T16:53:21Z) - CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models [6.931433424951554]
Large language models (LLMs) introduce new security risks, but there are few comprehensive evaluation suites to measure and reduce these risks.
We present BenchmarkName, a novel benchmark to quantify LLM security risks and capabilities.
We evaluate multiple state-of-the-art (SOTA) LLMs, including GPT-4, Mistral, Meta Llama 3 70B-Instruct, and Code Llama.
arXiv Detail & Related papers (2024-04-19T20:11:12Z) - Curiosity-driven Red-teaming for Large Language Models [43.448044721642916]
Large language models (LLMs) hold great potential for many natural language applications but risk generating incorrect or toxic content.
relying solely on human testers is expensive and time-consuming.
Our method of curiosity-driven red teaming (CRT) achieves greater coverage of test cases while mantaining or increasing their effectiveness compared to existing methods.
arXiv Detail & Related papers (2024-02-29T18:55:03Z) - LLMAuditor: A Framework for Auditing Large Language Models Using Human-in-the-Loop [7.77005079649294]
An effective method is to probe the Large Language Models using different versions of the same question.
To operationalize this auditing method at scale, we need an approach to create those probes reliably and automatically.
We propose the LLMAuditor framework, where one uses a different LLM along with human-in-the-loop (HIL)
This approach offers verifiability and transparency, while avoiding circular reliance on the same LLM.
arXiv Detail & Related papers (2024-02-14T17:49:31Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
We find that in the representation space, the input queries are typically moved by safety prompts in a "higher-refusal" direction.
Inspired by these findings, we propose a method for safety prompt optimization, namely DRO.
Treating a safety prompt as continuous, trainable embeddings, DRO learns to move the queries' representations along or opposite the refusal direction, depending on their harmfulness.
arXiv Detail & Related papers (2024-01-31T17:28:24Z) - Navigating the OverKill in Large Language Models [84.62340510027042]
We investigate the factors for overkill by exploring how models handle and determine the safety of queries.
Our findings reveal the presence of shortcuts within models, leading to an over-attention of harmful words like 'kill' and prompts emphasizing safety will exacerbate overkill.
We introduce Self-Contrastive Decoding (Self-CD), a training-free and model-agnostic strategy, to alleviate this phenomenon.
arXiv Detail & Related papers (2024-01-31T07:26:47Z) - Make Them Spill the Beans! Coercive Knowledge Extraction from
(Production) LLMs [31.80386572346993]
We exploit the fact that even when an LLM rejects a toxic request, a harmful response often hides deep in the output logits.
This approach differs from and outperforms jail-breaking methods, achieving 92% effectiveness compared to 62%, and is 10 to 20 times faster.
Our findings indicate that interrogation can extract toxic knowledge even from models specifically designed for coding tasks.
arXiv Detail & Related papers (2023-12-08T01:41:36Z) - Probing the Multi-turn Planning Capabilities of LLMs via 20 Question
Games [14.063311955315077]
Large language models (LLMs) are effective at answering questions that are clearly asked.
When faced with ambiguous queries they can act unpredictably and produce incorrect outputs.
This underscores the need for the development of intelligent agents capable of asking clarification questions to resolve ambiguities effectively.
arXiv Detail & Related papers (2023-10-02T16:55:37Z) - Can Large Language Models Infer Causation from Correlation? [104.96351414570239]
We test the pure causal inference skills of large language models (LLMs)
We formulate a novel task Corr2Cause, which takes a set of correlational statements and determines the causal relationship between the variables.
We show that these models achieve almost close to random performance on the task.
arXiv Detail & Related papers (2023-06-09T12:09:15Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.