Comparative Survey of Cyber-Threat and Attack Trends and Prediction of Future Cyber-Attack Patterns
- URL: http://arxiv.org/abs/2410.05308v1
- Date: Fri, 4 Oct 2024 19:06:42 GMT
- Title: Comparative Survey of Cyber-Threat and Attack Trends and Prediction of Future Cyber-Attack Patterns
- Authors: Uwazie Emmanuel Chinanu, Oluyemi Amujo,
- Abstract summary: Cyber security breaches are constantly on the rise with huge uncertainty and risks.
The diversity of attacks and growing state actors involvement without any sort of regulation is making cyber weapons attractive to the states.
States are leveraging the anonymity and attribution flaws to hit hard on perceived adversaries.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper presents a comparative survey of cyberthreat and attack trends starting from 2010 till date Cyber security breaches are constantly on the rise with huge uncertainty and risks The trend is causing rife globally because of its consequences to national security and economy With diverse interests and motivations for various categories of threats and attacks we carried out a comparative survey and analysis of security breaches to unravel the patterns and predict what will shape future security challenges The diversity of attacks and growing state actors involvement without any sort of regulation is making cyber weapons attractive to the states States are leveraging the anonymity and attribution flaws to hit hard on perceived adversaries thereby complicating the cyber security equation
Related papers
- Cyber Risk Taxonomies: Statistical Analysis of Cybersecurity Risk Classifications [0.0]
We argue in favour of switching the attention from goodness-of-fit and in-sample performance, to focusing on the out-of sample forecasting performance.
Our results indicate that business motivated cyber risk classifications appear to be too restrictive and not flexible enough to capture the heterogeneity of cyber risk events.
arXiv Detail & Related papers (2024-10-04T04:12:34Z) - The MESA Security Model 2.0: A Dynamic Framework for Mitigating Stealth Data Exfiltration [0.0]
Stealth Data Exfiltration is a significant cyber threat characterized by covert infiltration, extended undetectability, and unauthorized dissemination of confidential data.
Our findings reveal that conventional defense-in-depth strategies often fall short in combating these sophisticated threats.
As we navigate this complex landscape, it is crucial to anticipate potential threats and continually update our defenses.
arXiv Detail & Related papers (2024-05-17T16:14:45Z) - Assessing The Effectiveness Of Current Cybersecurity Regulations And Policies In The US [0.0]
The study evaluates the impact of these regulations on different sectors and analyzes trends in cybercrime data from 2000 to 2022.
The findings highlight the challenges, successes, and the need for continuous adaptation in the face of evolving cyber threats.
arXiv Detail & Related papers (2024-04-17T15:26:55Z) - The New Frontier of Cybersecurity: Emerging Threats and Innovations [0.0]
The research delves into the consequences of these threats on individuals, organizations, and society at large.
The sophistication and diversity of these emerging threats necessitate a multi-layered approach to cybersecurity.
This study emphasizes the importance of implementing effective measures to mitigate these threats.
arXiv Detail & Related papers (2023-11-05T12:08:20Z) - Designing an attack-defense game: how to increase robustness of
financial transaction models via a competition [69.08339915577206]
Given the escalating risks of malicious attacks in the finance sector, understanding adversarial strategies and robust defense mechanisms for machine learning models is critical.
We aim to investigate the current state and dynamics of adversarial attacks and defenses for neural network models that use sequential financial data as the input.
We have designed a competition that allows realistic and detailed investigation of problems in modern financial transaction data.
The participants compete directly against each other, so possible attacks and defenses are examined in close-to-real-life conditions.
arXiv Detail & Related papers (2023-08-22T12:53:09Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Global Pandemics Influence on Cyber Security and Cyber Crimes [5.8010446129208155]
COVID-19 has caused widespread damage across many areas of life and has made humans more dependent on the internet and technology.
This paper examines the different types of security threats and cyber crimes that people faced in the pandemic time and the need for a safe and secure cyber infrastructure.
arXiv Detail & Related papers (2023-02-24T05:26:42Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.