論文の概要: The OCON model: an old but gold solution for distributable supervised classification
- arxiv url: http://arxiv.org/abs/2410.05320v1
- Date: Sat, 5 Oct 2024 09:15:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 19:27:19.039561
- Title: The OCON model: an old but gold solution for distributable supervised classification
- Title(参考訳): OCONモデル:分配可能な教師付き分類のための古いが金の解
- Authors: Stefano Giacomelli, Marco Giordano, Claudia Rinaldi,
- Abstract要約: 本稿では,教師付き分類タスクに対するワンクラスアプローチとワンクラスネットワークモデルの構造的応用について紹介する。
現在の複雑なアーキテクチャ(90.0~93.7%)に匹敵する分類精度を実現する。
- 参考スコア(独自算出の注目度): 0.28675177318965045
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces to a structured application of the One-Class approach and the One-Class-One-Network model for supervised classification tasks, specifically addressing a vowel phonemes classification case study within the Automatic Speech Recognition research field. Through pseudo-Neural Architecture Search and Hyper-Parameters Tuning experiments conducted with an informed grid-search methodology, we achieve classification accuracy comparable to nowadays complex architectures (90.0 - 93.7%). Despite its simplicity, our model prioritizes generalization of language context and distributed applicability, supported by relevant statistical and performance metrics. The experiments code is openly available at our GitHub.
- Abstract(参考訳): 本稿では, 音声認識研究分野における母音音素分類ケーススタディに特化して, 教師付き分類タスクに対するワンクラスアプローチとワンクラスネットワークモデルの構造化の適用について紹介する。
疑似ニューラルアーキテクチャサーチとハイパーパラメータ 情報グリッドサーチ手法によるチューニング実験により、現在の複雑なアーキテクチャ(90.0~93.7%)に匹敵する分類精度を達成する。
その単純さにもかかわらず、我々のモデルは言語コンテキストと分散適用性の一般化を優先し、関連する統計および性能指標によって支持される。
実験コードはGitHubで公開されています。
関連論文リスト
- The OCON model: an old but green solution for distributable supervised classification for acoustic monitoring in smart cities [0.28675177318965045]
本稿では,音声認識領域における母音音素分類と話者認識について述べる。
われわれのケーススタディでは、ASRモデルは独自のセンシングと稲妻システムで動作し、都市部における大気汚染の監視に利用されている。
情報グリッド探索手法を用いて,疑似ニューラルアーキテクチャ探索とハイパースチューニング実験の組み合わせを形式化し,現在最も複雑なアーキテクチャに匹敵する分類精度を実現する。
論文 参考訳(メタデータ) (2024-10-05T09:47:54Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - Towards Realistic Zero-Shot Classification via Self Structural Semantic
Alignment [53.2701026843921]
大規模事前訓練型視覚言語モデル(VLM)はゼロショット分類に有効であることが証明されている。
本稿では,アノテーションではなく,より広い語彙を前提とした,より難易度の高いゼロショット分類(Realistic Zero-Shot Classification)を提案する。
本稿では,ラベルのないデータから構造意味情報を抽出し,同時に自己学習を行う自己構造意味アライメント(S3A)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-24T17:56:46Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - Pareto-wise Ranking Classifier for Multi-objective Evolutionary Neural
Architecture Search [15.454709248397208]
本研究は,多様な設計目的の下で実現可能な深層モデルを見つける方法に焦点を当てる。
オンライン分類器を訓練し、候補と構築された参照アーキテクチャとの優位性関係を予測する。
さまざまな目的や制約の下で、2Mから6Mまでの異なるモデルサイズを持つ多数のニューラルアーキテクチャを見つけます。
論文 参考訳(メタデータ) (2021-09-14T13:28:07Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Adaptive Prototypical Networks with Label Words and Joint Representation
Learning for Few-Shot Relation Classification [17.237331828747006]
本研究は,少ショット関係分類(FSRC)に焦点を当てる。
クラスプロトタイプの表現にラベル単語を追加するための適応的混合機構を提案する。
FewRelでは、異なる数ショット(FS)設定で実験が行われた。
論文 参考訳(メタデータ) (2021-01-10T11:25:42Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Coarse-to-Fine Memory Matching for Joint Retrieval and Classification [0.7081604594416339]
共同検索と分類のための新しいエンドツーエンド言語モデルを提案する。
FEVERファクト検証データセットの標準ブラインドテストセットで評価する。
我々は、モデルを分析・制約するためのこの設定に、模範監査を拡張します。
論文 参考訳(メタデータ) (2020-11-29T05:06:03Z) - Document Ranking with a Pretrained Sequence-to-Sequence Model [56.44269917346376]
関連ラベルを「ターゲット語」として生成するためにシーケンス・ツー・シーケンス・モデルをどのように訓練するかを示す。
提案手法は,データポーラ方式におけるエンコーダのみのモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2020-03-14T22:29:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。