Separable ellipsoids around multipartite states
- URL: http://arxiv.org/abs/2410.05400v1
- Date: Mon, 7 Oct 2024 18:05:26 GMT
- Title: Separable ellipsoids around multipartite states
- Authors: Robin Y. Wen, Gilles Parez, William Witczak-Krempa, Achim Kempf,
- Abstract summary: We show that there exists an ellipsoid of separable states centered around $rho_rm prod$.
The volume of this separable ellipsoid is typically exponentially larger than that of the separable ball proposed in previous works.
Our criterion will help numerical procedures to rigorously detect separability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that, in finite dimensions, around any $m$-partite product state $\rho_{\rm prod}=\rho_1\otimes...\otimes\rho_m$, there exists an ellipsoid of separable states centered around $\rho_{\rm prod}$. The volume of this separable ellipsoid is typically exponentially larger than that of the separable ball proposed in previous works, due to the large hierarchy of eigenvalues occurring in typical states. We further refine this ellipsoidal criterion to a trace formula, generalize it to characterize the separable region around all separable states, and further study biseparability. Our criterion will help numerical procedures to rigorously detect separability. We apply the procedure for separability detection on three-qubit X state in a dephasing environment, and the 1d transverse field Ising model at finite temperature to illustrate the power of our procedure for understanding entanglement in physical systems.
Related papers
- Enhancing a Many-body Dipolar Rydberg Tweezer Array with Arbitrary Local
Controls [2.1759090763941034]
We implement and characterize a protocol that enables arbitrary local controls in a dipolar atom array.
Our approach relies on a combination of local addressing beams and global microwave fields.
arXiv Detail & Related papers (2024-02-16T20:11:34Z) - Robust non-ergodicity of ground state in the $\beta$ ensemble [0.0]
We study the localization properties of the ground and anti-ground states of the $beta$ ensemble.
Both analytically and numerically, we show that both the edge states demonstrate non-ergodic (fractal) properties for $betasimmathcalO(1)$.
Surprisingly, the fractal dimension of the edge states remain three time smaller than that of the bulk states irrespective of the global phase of the $beta$ ensemble.
arXiv Detail & Related papers (2023-11-16T19:12:00Z) - Quantum state complexity meets many-body scars [0.0]
Scar eigenstates in a many-body system refer to a small subset of non-thermal finite energy density eigenstates embedded into an otherwise thermal spectrum.
We probe these small sets of special eigenstates starting from particular initial states by computing the spread complexity associated to time evolution of the PXP hamiltonian.
arXiv Detail & Related papers (2023-05-16T18:10:46Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Multipartitioning topological phases by vertex states and quantum
entanglement [9.519248546806903]
We discuss multipartitions of the gapped ground states of (2+1)-dimensional topological liquids into three spatial regions.
We compute various correlation measures, such as entanglement negativity, reflected entropy, and associated spectra.
As specific examples, we consider topological chiral $p$-wave superconductors and Chern insulators.
arXiv Detail & Related papers (2021-10-22T18:01:24Z) - Excited states from eigenvector continuation: the anharmonic oscillator [58.720142291102135]
Eigenvector continuation (EC) has attracted a lot attention in nuclear structure and reactions as a variational resummation tool for many-body expansions.
This work is dedicated to a detailed understanding of the emergence of excited states from the eigenvector continuation approach.
arXiv Detail & Related papers (2021-08-05T19:28:25Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Attainability and lower semi-continuity of the relative entropy of
entanglement, and variations on the theme [8.37609145576126]
The relative entropy of entanglement $E_Rite is defined as the distance of a multi-part quantum entanglement from the set of separable states as measured by the quantum relative entropy.
We show that this state is always achieved, i.e. any state admits a closest separable state, even in dimensions; also, $E_Rite is everywhere lower semi-negative $lambda_$quasi-probability distribution.
arXiv Detail & Related papers (2021-05-17T18:03:02Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.