Interconnected Kingdoms: Comparing 'A Song of Ice and Fire' Adaptations Across Media Using Complex Networks
- URL: http://arxiv.org/abs/2410.05453v1
- Date: Mon, 7 Oct 2024 19:35:46 GMT
- Title: Interconnected Kingdoms: Comparing 'A Song of Ice and Fire' Adaptations Across Media Using Complex Networks
- Authors: Arthur Amalvy, Madeleine Janickyj, Shane Mannion, Pádraig MacCarron, Vincent Labatut,
- Abstract summary: We propose several methods to match characters between media and compare their position in the networks.
We apply these methods to the novel series textitA Song of Ice and Fire, by G.R.R. Martin, and its comics and TV show adaptations.
- Score: 2.653724344357519
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this article, we propose and apply a method to compare adaptations of the same story across different media. We tackle this task by modelling such adaptations through character networks. We compare them by leveraging two concepts at the core of storytelling: the characters involved, and the dynamics of the story. We propose several methods to match characters between media and compare their position in the networks; and perform narrative matching, i.e. match the sequences of narrative units that constitute the plots. We apply these methods to the novel series \textit{A Song of Ice and Fire}, by G.R.R. Martin, and its comics and TV show adaptations. Our results show that interactions between characters are not sufficient to properly match individual characters between adaptations, but that using some additional information such as character affiliation or gender significantly improves the performance. On the contrary, character interactions convey enough information to perform narrative matching, and allow us to detect the divergence between the original novels and its TV show adaptation.
Related papers
- Towards Enhanced Immersion and Agency for LLM-based Interactive Drama [55.770617779283064]
This paper begins with understanding interactive drama from two aspects: Immersion, the player's feeling of being present in the story, and Agency.
To enhance these two aspects, we first propose Playwriting-guided Generation, a novel method that helps LLMs craft dramatic stories with substantially improved structures and narrative quality.
arXiv Detail & Related papers (2025-02-25T06:06:16Z) - Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
We present the first model capable of predicting visual stories with consistently grounded and coreferent character mentions.
Our model is finetuned on a new dataset which we build on top of the widely used VIST benchmark.
We also propose new evaluation metrics to measure the richness of characters and coreference in stories.
arXiv Detail & Related papers (2024-09-20T14:56:33Z) - Capturing Differences in Character Representations Between Communities: An Initial Study with Fandom [0.0]
This working paper focuses on the re-interpretation of characters, an integral part of the narrative story-world.
Using online fandom as data, computational methods were applied to explore shifts in character representations between two communities.
arXiv Detail & Related papers (2024-09-17T13:24:29Z) - ContextualStory: Consistent Visual Storytelling with Spatially-Enhanced and Storyline Context [50.572907418430155]
Existing autoregressive methods struggle with high memory usage, slow generation speeds, and limited context integration.
We propose ContextualStory, a novel framework designed to generate coherent story frames and extend frames for story continuation.
In experiments on PororoSV and FlintstonesSV benchmarks, ContextualStory significantly outperforms existing methods in both story visualization and story continuation.
arXiv Detail & Related papers (2024-07-13T05:02:42Z) - Evolving Storytelling: Benchmarks and Methods for New Character Customization with Diffusion Models [79.21968152209193]
We introduce the NewEpisode benchmark to evaluate generative models' adaptability in generating new stories with fresh characters.
We propose EpicEvo, a method that customizes a diffusion-based visual story generation model with a single story featuring the new characters seamlessly integrating them into established character dynamics.
arXiv Detail & Related papers (2024-05-20T07:54:03Z) - Analyzing Film Adaptation through Narrative Alignment [11.304581370821756]
Novels are often adapted into feature films, but differences between the two media usually require dropping sections of the source text from the movie script.
Here we study this screen adaptation process by constructing narrative alignments using the Smith-Waterman local alignment algorithm and SBERT embedding distance to quantify text similarity between scenes and book units.
We use these alignments to perform an automated analysis of 40 adaptations, revealing insights into the screenwriting process concerning (i) faithfulness of adaptation, (ii) importance of dialog, (iii) of narrative order, and (iv) gender representation issues reflective of the Bechdel test.
arXiv Detail & Related papers (2023-11-07T14:18:03Z) - Tragic and Comical Networks. Clustering Dramatic Genres According to
Structural Properties [0.0]
A growing tradition in the joint field of network studies and drama history produces interpretations from the character networks of the plays.
Our aim is to create a method that is able to cluster texts with similar structures on the basis of the play's well-interpretable and simple properties.
Finding these features is the most important part of our research, as well as establishing the appropriate statistical procedure to calculate the similarities between the texts.
arXiv Detail & Related papers (2023-02-16T12:36:16Z) - Make-A-Story: Visual Memory Conditioned Consistent Story Generation [57.691064030235985]
We propose a novel autoregressive diffusion-based framework with a visual memory module that implicitly captures the actor and background context.
Our method outperforms prior state-of-the-art in generating frames with high visual quality.
Our experiments for story generation on the MUGEN, the PororoSV and the FlintstonesSV dataset show that our method not only outperforms prior state-of-the-art in generating frames with high visual quality, but also models appropriate correspondences between the characters and the background.
arXiv Detail & Related papers (2022-11-23T21:38:51Z) - Film Trailer Generation via Task Decomposition [65.16768855902268]
We model movies as graphs, where nodes are shots and edges denote semantic relations between them.
We learn these relations using joint contrastive training which leverages privileged textual information from screenplays.
An unsupervised algorithm then traverses the graph and generates trailers that human judges prefer to ones generated by competitive supervised approaches.
arXiv Detail & Related papers (2021-11-16T20:50:52Z) - Telling Stories through Multi-User Dialogue by Modeling Character
Relations [14.117921448623342]
This paper explores character-driven story continuation, in which the story emerges through characters' first- and second-person narration as well as dialogue.
We hypothesize that a multi-task model that trains on character dialogue plus character relationship information improves transformer-based story continuation.
A series of ablations lend evidence to our hypothesis, showing that our multi-task model using character relationships improves story continuation accuracy over strong baselines.
arXiv Detail & Related papers (2021-05-31T15:39:41Z) - Inferring the Reader: Guiding Automated Story Generation with
Commonsense Reasoning [12.264880519328353]
We introduce Commonsense-inference Augmented neural StoryTelling (CAST), a framework for introducing commonsense reasoning into the generation process.
We find that our CAST method produces significantly more coherent, on-topic, enjoyable and fluent stories than existing models in both the single-character and two-character settings.
arXiv Detail & Related papers (2021-05-04T06:40:33Z) - Character Matters: Video Story Understanding with Character-Aware
Relations [47.69347058141917]
Video Story Question Answering (VSQA) offers an effective way to benchmark higher-level comprehension abilities of a model.
Current VSQA methods merely extract generic visual features from a scene.
We propose a novel model that continuously refines character-aware relations.
arXiv Detail & Related papers (2020-05-09T06:51:13Z) - PlotMachines: Outline-Conditioned Generation with Dynamic Plot State
Tracking [128.76063992147016]
We present PlotMachines, a neural narrative model that learns to transform an outline into a coherent story by tracking the dynamic plot states.
In addition, we enrich PlotMachines with high-level discourse structure so that the model can learn different writing styles corresponding to different parts of the narrative.
arXiv Detail & Related papers (2020-04-30T17:16:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.