COMBINEX: A Unified Counterfactual Explainer for Graph Neural Networks via Node Feature and Structural Perturbations
- URL: http://arxiv.org/abs/2502.10111v1
- Date: Fri, 14 Feb 2025 12:17:24 GMT
- Title: COMBINEX: A Unified Counterfactual Explainer for Graph Neural Networks via Node Feature and Structural Perturbations
- Authors: Flavio Giorgi, Fabrizio Silvestri, Gabriele Tolomei,
- Abstract summary: We propose COMBINEX, a novel GNN explainer that generates counterfactual explanations for both node and graph classification tasks.
Unlike prior methods, which treat structural and feature-based changes independently, COMBINEX optimally balances modifications to edges and node features.
This unified approach ensures minimal yet effective changes required to flip a model's prediction, resulting in realistic and interpretable counterfactuals.
- Score: 6.894071825948456
- License:
- Abstract: Counterfactual explanations have emerged as a powerful tool to unveil the opaque decision-making processes of graph neural networks (GNNs). However, existing techniques primarily focus on edge modifications, often overlooking the crucial role of node feature perturbations in shaping model predictions. To address this limitation, we propose COMBINEX, a novel GNN explainer that generates counterfactual explanations for both node and graph classification tasks. Unlike prior methods, which treat structural and feature-based changes independently, COMBINEX optimally balances modifications to edges and node features by jointly optimizing these perturbations. This unified approach ensures minimal yet effective changes required to flip a model's prediction, resulting in realistic and interpretable counterfactuals. Additionally, COMBINEX seamlessly handles both continuous and discrete node features, enhancing its versatility across diverse datasets and GNN architectures. Extensive experiments on real-world datasets and various GNN architectures demonstrate the effectiveness and robustness of our approach over existing baselines.
Related papers
- RelGNN: Composite Message Passing for Relational Deep Learning [56.48834369525997]
We introduce RelGNN, a novel GNN framework specifically designed to capture the unique characteristics of relational databases.
At the core of our approach is the introduction of atomic routes, which are sequences of nodes forming high-order tripartite structures.
RelGNN consistently achieves state-of-the-art accuracy with up to 25% improvement.
arXiv Detail & Related papers (2025-02-10T18:58:40Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
We introduce TRACER, a novel method grounded in causal inference theory to estimate the causal dynamics underpinning DNN decisions.
Our approach systematically intervenes on input features to observe how specific changes propagate through the network, affecting internal activations and final outputs.
TRACER further enhances explainability by generating counterfactuals that reveal possible model biases and offer contrastive explanations for misclassifications.
arXiv Detail & Related papers (2024-10-07T20:44:53Z) - Learning Invariant Representations of Graph Neural Networks via Cluster
Generalization [58.68231635082891]
Graph neural networks (GNNs) have become increasingly popular in modeling graph-structured data.
In this paper, we experimentally find that the performance of GNNs drops significantly when the structure shift happens.
We propose the Cluster Information Transfer (CIT) mechanism, which can learn invariant representations for GNNs.
arXiv Detail & Related papers (2024-03-06T10:36:56Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - ASGNN: Graph Neural Networks with Adaptive Structure [41.83813812538167]
We propose a novel interpretable message passing scheme with adaptive structure (ASMP) to defend against adversarial attacks on graph structure.
ASMP is adaptive in the sense that the message passing process in different layers is able to be carried out over dynamically adjusted graphs.
arXiv Detail & Related papers (2022-10-03T15:10:40Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Convolutional Neural Network Interpretability with General Pattern
Theory [0.0]
Improved interpretability of deep neural networks (DNNs) has practical benefits, such as more accountable usage, better algorithm maintenance and improvement.
We propose to use pattern theory formulated by Ulf Grenander, in which data can be described as configurations of fundamental objects.
U-Net-like structure is formed by attaching expansion blocks (EB) to ResNet, allowing it to perform semantic segmentation-like tasks.
arXiv Detail & Related papers (2021-02-05T07:11:48Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.