論文の概要: Pre-Ictal Seizure Prediction Using Personalized Deep Learning
- arxiv url: http://arxiv.org/abs/2410.05491v1
- Date: Mon, 7 Oct 2024 21:04:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 18:28:00.590723
- Title: Pre-Ictal Seizure Prediction Using Personalized Deep Learning
- Title(参考訳): パーソナライズドディープラーニングを用いた前Ictal Seizure予測
- Authors: Shriya Jaddu, Sidh Jaddu, Camilo Gutierrez, Quincy K. Tran,
- Abstract要約: 世界中で約2300万ないし30%のてんかん患者が薬剤抵抗性てんかん(DRE)を患っている
発作発生の予測不可能さは、安全上の問題や社会的懸念を引き起こし、DRE患者のライフスタイルを制限している。
本研究の目的は、開始から最大2時間前に発作を予測するための改良された技術と方法を使用することであった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Introduction: Approximately 23 million or 30% of epilepsy patients worldwide suffer from drug-resistant epilepsy (DRE). The unpredictability of seizure occurrences, which causes safety issues as well as social concerns, restrict the lifestyles of DRE patients. Surgical solutions and EEG-based solutions are very expensive, unreliable, invasive or impractical. The goal of this research was to employ improved technologies and methods to epilepsy patient physiological data and predict seizures up to two hours before onset, enabling non-invasive, affordable seizure prediction for DRE patients. Methods: This research used a 1D Convolutional Neural Network-Based Bidirectional Long Short-Term Memory network that was trained on a diverse set of epileptic patient physiological data to predict seizures. Transfer learning was further utilized to personalize and optimize predictions for specific patients. Clinical data was retrospectively obtained for nine epilepsy patients via wearable devices over a period of about three to five days from a prospectively maintained database. The physiological data included 54 seizure occurrences and included heart rate, blood volume pulse, accelerometry, body temperature, and electrodermal activity. Results and Conclusion: A general deep-learning model trained on the physiological data with randomly sampled test data achieved an accuracy of 91.94%. However, such a generalized deep learning model had varied performances on data from unseen patients. When the general model was personalized (further trained) with patient-specific data, the personalized model achieved significantly improved performance with accuracies as high as 97%. This preliminary research shows that patient-specific personalization may be a viable approach to achieve affordable, non-invasive seizure prediction that can improve the quality of life for DRE patients.
- Abstract(参考訳): 紹介:世界中で約2300万ないし30%のてんかん患者が薬剤耐性てんかん(DRE)を患っている。
発作発生の予測不可能さは、安全上の問題や社会的懸念を引き起こし、DRE患者のライフスタイルを制限している。
外科的ソリューションと脳波ベースのソリューションは非常に高価で、信頼性が低く、侵襲的で、実用的ではない。
本研究の目的は、患者の生理的データをてんかん化し、発症2時間前に発作を予測し、非侵襲的で安価なDRE患者の発作予測を可能にする技術と方法を使用することである。
方法: 本研究は1D Convolutional Neural Network-Based Bidirectional Long-Term Memory Networkを使用し, てんかん患者の生理的データをもとに, 発作を予測した。
移行学習は、特定の患者の予測をパーソナライズし、最適化するためにさらに活用された。
9例のてんかん患者に対して,約3~5日間の経過観察を行った。
生理的データには、54回の発作発生、心拍数、血流パルス、加速度計、体温、電球活動が含まれていた。
結果と結論: ランダムなサンプルデータを用いて生理データに基づいて訓練された一般的なディープラーニングモデルは、91.94%の精度を達成した。
しかし、このような一般化された深層学習モデルは、目に見えない患者のデータに基づいて様々な性能を示した。
一般モデルが患者固有のデータでパーソナライズされた場合、パーソナライズされたモデルは97%の精度で性能を向上した。
この予備研究は、患者固有のパーソナライゼーションが、DRE患者の生活の質を向上させるために、手頃な価格で非侵襲的な発作予測を実現するための、実行可能なアプローチであることを示している。
関連論文リスト
- Preictal Period Optimization for Deep Learning-Based Epileptic Seizure Prediction [0.0]
我々は頭皮脳波(EEG)信号を用いた発作予測のための競合的深層学習モデルを開発した。
オープンアクセス型CHB-MITデータセットを対象とした19名の小児患者を対象に,本モデルを訓練・評価した。
各患者のOPPを用いて、平均感度は99.31%、特異性は95.34%、AUCは99.35%、F1-スコアは97.46%と正しく同定された。
論文 参考訳(メタデータ) (2024-07-20T13:49:14Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - Integrated Convolutional and Recurrent Neural Networks for Health Risk
Prediction using Patient Journey Data with Many Missing Values [9.418011774179794]
本稿では,統合畳み込みニューラルネットワークとリカレントニューラルネットワークを用いたEMH患者旅行データモデリングのためのエンドツーエンドアプローチを提案する。
本モデルでは,各患者旅行における長期的・短期的時間的パターンを抽出し,インパルスデータ生成を伴わずに,高レベルのEHRデータの欠落を効果的に処理することができる。
論文 参考訳(メタデータ) (2022-11-11T07:36:18Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
本稿では,パーキンソン病患者のmPowerデータセットを用いて薬剤状態を予測する方法を提案する。
提案手法は,3つの薬物状態を客観的に予測する上で有望な結果を示す。
論文 参考訳(メタデータ) (2022-07-26T02:08:08Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
既存のアプローチは通常、てんかんの信号の高度にパーソナライズされた特性のために、患者固有の方法でモデルを訓練する。
患者固有のモデルは、蒸留された知識と追加のパーソナライズされたデータによって得られる。
提案手法を用いて,CHB-MIT sEEGデータベース上で5つの最先端の発作予測法を訓練する。
論文 参考訳(メタデータ) (2022-02-25T10:30:29Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Patient-independent Epileptic Seizure Prediction using Deep Learning
Models [39.19336481493405]
発作予知システムの目的は、発作が起こる前に起こる前頭前脳のステージを正常に識別することである。
患者に依存しない発作予測モデルは、データセット内の複数の被験者に正確なパフォーマンスを提供するように設計されている。
患者に依存しない2つの深層学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-18T23:13:48Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
本研究は, 実世界の患者データから情報を最適に抽出する作業に対処する。
本研究では,患者軌跡モデリングに適した機械学習手法を用いることで,患者の障害進行を2年間の地平線で予測できることを示す。
文献で利用可能なモデルと比較して、この研究はMS病の進行予測に最も完全な患者履歴を使用する。
論文 参考訳(メタデータ) (2020-11-09T20:48:00Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。