Self-rationalization improves LLM as a fine-grained judge
- URL: http://arxiv.org/abs/2410.05495v1
- Date: Mon, 7 Oct 2024 21:05:53 GMT
- Title: Self-rationalization improves LLM as a fine-grained judge
- Authors: Prapti Trivedi, Aditya Gulati, Oliver Molenschot, Meghana Arakkal Rajeev, Rajkumar Ramamurthy, Keith Stevens, Tanveesh Singh Chaudhery, Jahnavi Jambholkar, James Zou, Nazneen Rajani,
- Abstract summary: We introduce Self-Rationalization, an iterative process of improving the rationales for the judge models.
Self-rationalization works by having the model generate multiple judgments with rationales for the same input.
We show that our model learns to produce higher quality rationales, with a win rate of $62%$ on average compared to models just trained via SFT on rationale.
- Score: 21.917301609125417
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: LLM-as-a-judge models have been used for evaluating both human and AI generated content, specifically by providing scores and rationales. Rationales, in addition to increasing transparency, help models learn to calibrate its judgments. Enhancing a model's rationale can therefore improve its calibration abilities and ultimately the ability to score content. We introduce Self-Rationalization, an iterative process of improving the rationales for the judge models, which consequently improves the score for fine-grained customizable scoring criteria (i.e., likert-scale scoring with arbitrary evaluation criteria). Self-rationalization works by having the model generate multiple judgments with rationales for the same input, curating a preference pair dataset from its own judgements, and iteratively fine-tuning the judge via DPO. Intuitively, this approach allows the judge model to self-improve by learning from its own rationales, leading to better alignment and evaluation accuracy. After just two iterations -- while only relying on examples in the training set -- human evaluation shows that our judge model learns to produce higher quality rationales, with a win rate of $62\%$ on average compared to models just trained via SFT on rationale . This judge model also achieves high scoring accuracy on BigGen Bench and Reward Bench, outperforming even bigger sized models trained using SFT with rationale, self-consistency or best-of-$N$ sampling by $3\%$ to $9\%$.
Related papers
- Limits to scalable evaluation at the frontier: LLM as Judge won't beat twice the data [14.95829896035971]
An emerging family of debiasing tools promises to fix issues by using a few high quality labels to debias a large number of model judgments.
Our main result shows that when the judge is no more accurate than the evaluated model, no debiasing method can decrease the required amount of ground truth labels by more than half.
arXiv Detail & Related papers (2024-10-17T08:49:42Z) - Direct Judgement Preference Optimization [66.83088028268318]
We train large language models (LLMs) as generative judges to evaluate and critique other models' outputs.
We employ three approaches to collect the preference pairs for different use cases, each aimed at improving our generative judge from a different perspective.
Our model robustly counters inherent biases such as position and length bias, flexibly adapts to any evaluation protocol specified by practitioners, and provides helpful language feedback for improving downstream generator models.
arXiv Detail & Related papers (2024-09-23T02:08:20Z) - Self-Judge: Selective Instruction Following with Alignment Self-Evaluation [27.69410513313001]
We study the study of selective instruction following, whereby the system declines to execute instructions if the anticipated response quality is low.
We introduce Self-J, a novel self-training framework for developing judge models without needing human-annotated quality scores.
arXiv Detail & Related papers (2024-09-02T04:14:13Z) - Self-Taught Evaluators [77.92610887220594]
We present an approach that aims to im-proves without human annotations, using synthetic training data only.
Our Self-Taught Evaluator can improve a strong LLM from 75.4 to 88.3 on RewardBench.
arXiv Detail & Related papers (2024-08-05T17:57:02Z) - Improving Language Model Reasoning with Self-motivated Learning [60.779625789039486]
textitSelf-motivated Learning framework motivates the model itself to automatically generate rationales on existing datasets.
We train a reward model with the rank to evaluate the quality of rationales, and improve the performance of reasoning through reinforcement learning.
arXiv Detail & Related papers (2024-04-10T14:05:44Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Leveraging Uncertainty Estimates To Improve Classifier Performance [4.4951754159063295]
Binary classification involves predicting the label of an instance based on whether the model score for the positive class exceeds a threshold chosen based on the application requirements.
However, model scores are often not aligned with the true positivity rate.
This is especially true when the training involves a differential sampling across classes or there is distributional drift between train and test settings.
arXiv Detail & Related papers (2023-11-20T12:40:25Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Calibrating LLM-Based Evaluator [92.17397504834825]
We propose AutoCalibrate, a multi-stage, gradient-free approach to calibrate and align an LLM-based evaluator toward human preference.
Instead of explicitly modeling human preferences, we first implicitly encompass them within a set of human labels.
Our experiments on multiple text quality evaluation datasets illustrate a significant improvement in correlation with expert evaluation through calibration.
arXiv Detail & Related papers (2023-09-23T08:46:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.