VisDiff: SDF-Guided Polygon Generation for Visibility Reconstruction and Recognition
- URL: http://arxiv.org/abs/2410.05530v1
- Date: Mon, 7 Oct 2024 22:17:11 GMT
- Title: VisDiff: SDF-Guided Polygon Generation for Visibility Reconstruction and Recognition
- Authors: Rahul Moorthy, Volkan Isler,
- Abstract summary: An active frontier in representation learning is understanding representations for structures which may not admit well-behaved local neighborhoods or distance functions.
We introduce VisDiff, a novel diffusion-based approach to reconstruct a polygon from its given visibility graph G.
Our method first estimates the signed distance function (SDF) of P from G. Afterwards, it extracts ordered locations that have the pairwise visibility relationship given by the edges of G.
- Score: 23.45542550861476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The capability to learn latent representations plays a key role in the effectiveness of recent machine learning methods. An active frontier in representation learning is understanding representations for combinatorial structures which may not admit well-behaved local neighborhoods or distance functions. For example, for polygons, slightly perturbing vertex locations might lead to significant changes in their combinatorial structure and may even lead to invalid polygons. In this paper, we investigate representations to capture the underlying combinatorial structures of polygons. Specifically, we study the open problem of Visibility Reconstruction: Given a visibility graph G, construct a polygon P whose visibility graph is G. We introduce VisDiff, a novel diffusion-based approach to reconstruct a polygon from its given visibility graph G. Our method first estimates the signed distance function (SDF) of P from G. Afterwards, it extracts ordered vertex locations that have the pairwise visibility relationship given by the edges of G. Our main insight is that going through the SDF significantly improves learning for reconstruction. In order to train VisDiff, we make two main contributions: (1) We design novel loss components for computing the visibility in a differentiable manner and (2) create a carefully curated dataset. We use this dataset to benchmark our method and achieve 21% improvement in F1-Score over standard methods. We also demonstrate effective generalization to out-of-distribution polygon types and show that learning a generative model allows us to sample the set of polygons with a given visibility graph. Finally, we extend our method to the related combinatorial problem of reconstruction from a triangulation. We achieve 95% classification accuracy of triangulation edges and a 4% improvement in Chamfer distance compared to current architectures.
Related papers
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - RoIPoly: Vectorized Building Outline Extraction Using Vertex and Logit Embeddings [5.093758132026397]
We propose a novel query-based approach for extracting building outlines from aerial or satellite imagery.
We formulate each polygon as a query and constrain the query attention on the most relevant regions of a potential building.
We evaluate our method on the vectorized building outline extraction dataset CrowdAI and the 2D floorplan reconstruction dataset Structured3D.
arXiv Detail & Related papers (2024-07-20T16:12:51Z) - Learning Geometric Invariant Features for Classification of Vector Polygons with Graph Message-passing Neural Network [3.804240190982697]
We propose a novel graph message-passing neural network (PolyMP) to learn the geometric-invariant features for shape classification of polygons.
We show that the proposed graph-based PolyMP network enables the learning of expressive geometric features invariant to geometric transformations of polygons.
arXiv Detail & Related papers (2024-07-05T08:19:36Z) - PolygonGNN: Representation Learning for Polygonal Geometries with Heterogeneous Visibility Graph [8.971120205703887]
We introduce a framework specifically designed for learning representations of polygonal geometries, particularly multipolygons.
To enhance computational efficiency and minimize graph redundancy, we implement a heterogeneous spanning tree sampling method.
We also introduce Multipolygon-GNN, a novel model tailored to leverage the spatial and semantic heterogeneity inherent in the visibility graph.
arXiv Detail & Related papers (2024-06-30T16:07:49Z) - PolyGNN: Polyhedron-based Graph Neural Network for 3D Building Reconstruction from Point Clouds [22.18061879431175]
PolyGNN is a graph neural network for building reconstruction point clouds.
It learns to assemble primitives obtained by polyhedral decomposition.
We conduct a transferability analysis across cities and on real-world point clouds.
arXiv Detail & Related papers (2023-07-17T16:52:25Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
We present a learning-based method, namely GeoUDF, to tackle the problem of reconstructing a discrete surface from a sparse point cloud.
To be specific, we propose a geometry-guided learning method for UDF and its gradient estimation.
To extract triangle meshes from the predicted UDF, we propose a customized edge-based marching cube module.
arXiv Detail & Related papers (2022-11-30T06:02:01Z) - Towards General-Purpose Representation Learning of Polygonal Geometries [62.34832826705641]
We develop a general-purpose polygon encoding model, which can encode a polygonal geometry into an embedding space.
We conduct experiments on two tasks: 1) shape classification based on MNIST; 2) spatial relation prediction based on two new datasets - DBSR-46K and DBSR-cplx46K.
Our results show that NUFTspec and ResNet1D outperform multiple existing baselines with significant margins.
arXiv Detail & Related papers (2022-09-29T15:59:23Z) - Learning Spatial Context with Graph Neural Network for Multi-Person Pose
Grouping [71.59494156155309]
Bottom-up approaches for image-based multi-person pose estimation consist of two stages: keypoint detection and grouping.
In this work, we formulate the grouping task as a graph partitioning problem, where we learn the affinity matrix with a Graph Neural Network (GNN)
The learned geometry-based affinity is further fused with appearance-based affinity to achieve robust keypoint association.
arXiv Detail & Related papers (2021-04-06T09:21:14Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.