PolygonGNN: Representation Learning for Polygonal Geometries with Heterogeneous Visibility Graph
- URL: http://arxiv.org/abs/2407.00742v1
- Date: Sun, 30 Jun 2024 16:07:49 GMT
- Title: PolygonGNN: Representation Learning for Polygonal Geometries with Heterogeneous Visibility Graph
- Authors: Dazhou Yu, Yuntong Hu, Yun Li, Liang Zhao,
- Abstract summary: We introduce a framework specifically designed for learning representations of polygonal geometries, particularly multipolygons.
To enhance computational efficiency and minimize graph redundancy, we implement a heterogeneous spanning tree sampling method.
We also introduce Multipolygon-GNN, a novel model tailored to leverage the spatial and semantic heterogeneity inherent in the visibility graph.
- Score: 8.971120205703887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Polygon representation learning is essential for diverse applications, encompassing tasks such as shape coding, building pattern classification, and geographic question answering. While recent years have seen considerable advancements in this field, much of the focus has been on single polygons, overlooking the intricate inner- and inter-polygonal relationships inherent in multipolygons. To address this gap, our study introduces a comprehensive framework specifically designed for learning representations of polygonal geometries, particularly multipolygons. Central to our approach is the incorporation of a heterogeneous visibility graph, which seamlessly integrates both inner- and inter-polygonal relationships. To enhance computational efficiency and minimize graph redundancy, we implement a heterogeneous spanning tree sampling method. Additionally, we devise a rotation-translation invariant geometric representation, ensuring broader applicability across diverse scenarios. Finally, we introduce Multipolygon-GNN, a novel model tailored to leverage the spatial and semantic heterogeneity inherent in the visibility graph. Experiments on five real-world and synthetic datasets demonstrate its ability to capture informative representations for polygonal geometries.
Related papers
- Geometry Distributions [51.4061133324376]
We propose a novel geometric data representation that models geometry as distributions.
Our approach uses diffusion models with a novel network architecture to learn surface point distributions.
We evaluate our representation qualitatively and quantitatively across various object types, demonstrating its effectiveness in achieving high geometric fidelity.
arXiv Detail & Related papers (2024-11-25T04:06:48Z) - SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Learning Geometric Invariant Features for Classification of Vector Polygons with Graph Message-passing Neural Network [3.804240190982697]
We propose a novel graph message-passing neural network (PolyMP) to learn the geometric-invariant features for shape classification of polygons.
We show that the proposed graph-based PolyMP network enables the learning of expressive geometric features invariant to geometric transformations of polygons.
arXiv Detail & Related papers (2024-07-05T08:19:36Z) - Simplicial Representation Learning with Neural $k$-Forms [14.566552361705499]
This paper focuses on leveraging geometric information from simplicial complexes embedded in $mathbbRn$ using node coordinates.
We use differential k-forms in mathbbRn to create representations of simplices, offering interpretability and geometric consistency without message passing.
Our method is efficient, versatile, and applicable to various input complexes, including graphs, simplicial complexes, and cell complexes.
arXiv Detail & Related papers (2023-12-13T21:03:39Z) - Towards General-Purpose Representation Learning of Polygonal Geometries [62.34832826705641]
We develop a general-purpose polygon encoding model, which can encode a polygonal geometry into an embedding space.
We conduct experiments on two tasks: 1) shape classification based on MNIST; 2) spatial relation prediction based on two new datasets - DBSR-46K and DBSR-cplx46K.
Our results show that NUFTspec and ResNet1D outperform multiple existing baselines with significant margins.
arXiv Detail & Related papers (2022-09-29T15:59:23Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - PolyNet: Polynomial Neural Network for 3D Shape Recognition with
PolyShape Representation [51.147664305955495]
3D shape representation and its processing have substantial effects on 3D shape recognition.
We propose a deep neural network-based method (PolyNet) and a specific polygon representation (PolyShape)
Our experiments demonstrate the strength and the advantages of PolyNet on both 3D shape classification and retrieval tasks.
arXiv Detail & Related papers (2021-10-15T06:45:59Z) - Heterogeneous Graph Neural Network with Multi-view Representation
Learning [16.31723570596291]
We propose a Heterogeneous Graph Neural Network with Multi-View Representation Learning (MV-HetGNN) for heterogeneous graph embedding.
The proposed model consists of node feature transformation, view-specific ego graph encoding and auto multi-view fusion to thoroughly learn complex structural and semantic information for generating comprehensive node representations.
Extensive experiments on three real-world heterogeneous graph datasets show that the proposed MV-HetGNN model consistently outperforms all the state-of-the-art GNN baselines in various downstream tasks.
arXiv Detail & Related papers (2021-08-31T07:18:48Z) - Isometric Multi-Shape Matching [50.86135294068138]
Finding correspondences between shapes is a fundamental problem in computer vision and graphics.
While isometries are often studied in shape correspondence problems, they have not been considered explicitly in the multi-matching setting.
We present a suitable optimisation algorithm for solving our formulation and provide a convergence and complexity analysis.
arXiv Detail & Related papers (2020-12-04T15:58:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.