論文の概要: A Comprehensive Study on Object Detection Techniques in Unconstrained
Environments
- arxiv url: http://arxiv.org/abs/2304.05295v1
- Date: Tue, 11 Apr 2023 15:45:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 14:15:05.026705
- Title: A Comprehensive Study on Object Detection Techniques in Unconstrained
Environments
- Title(参考訳): 非拘束環境における物体検出技術に関する総合的研究
- Authors: Hrishitva Patel
- Abstract要約: オブジェクト検出は、画像やビデオ内のオブジェクトを識別し、ローカライズすることを目的とした、コンピュータビジョンにおける重要なタスクである。
近年のディープラーニングと畳み込みニューラルネットワーク(CNN)の進歩により、オブジェクト検出技術の性能が大幅に向上した。
本稿では,制約のない環境下でのオブジェクト検出技術について,様々な課題,データセット,最先端のアプローチを含む包括的研究を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object detection is a crucial task in computer vision that aims to identify
and localize objects in images or videos. The recent advancements in deep
learning and Convolutional Neural Networks (CNNs) have significantly improved
the performance of object detection techniques. This paper presents a
comprehensive study of object detection techniques in unconstrained
environments, including various challenges, datasets, and state-of-the-art
approaches. Additionally, we present a comparative analysis of the methods and
highlight their strengths and weaknesses. Finally, we provide some future
research directions to further improve object detection in unconstrained
environments.
- Abstract(参考訳): 物体検出はコンピュータビジョンにおいて重要なタスクであり、画像やビデオ内の物体を識別しローカライズすることを目的としている。
近年のディープラーニングと畳み込みニューラルネットワーク(CNN)の進歩により、オブジェクト検出技術の性能が大幅に向上した。
本稿では,様々な課題,データセット,最先端のアプローチを含む,制約のない環境における物体検出技術の包括的研究を行う。
さらに,本手法の比較分析を行い,その強度と弱点を明らかにする。
最後に,制約のない環境での物体検出をさらに改善するための今後の研究方向を提案する。
関連論文リスト
- Object Detection and Tracking [0.0]
プロジェクトの目的は、オブジェクト検出のための最新の技術を統合することであり、リアルタイムのパフォーマンスで高い精度を達成することを目的としている。
本研究では,ディープラーニング技術を用いて,エンドツーエンドの物体検出問題を完全に解決する。
論文 参考訳(メタデータ) (2025-02-14T17:13:52Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
本研究では,新しいデータセット,ベンチマーク,動的粗大な学習手法を提案する。
提案するデータセットであるAI-TOD-Rは、すべてのオブジェクト指向オブジェクト検出データセットの中で最小のオブジェクトサイズを特徴としている。
完全教師付きおよびラベル効率の両アプローチを含む,幅広い検出パラダイムにまたがるベンチマークを提案する。
論文 参考訳(メタデータ) (2024-12-16T09:14:32Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - Perceptual Piercing: Human Visual Cue-based Object Detection in Low Visibility Conditions [2.0409124291940826]
本研究では,大気散乱と人間の視覚野機構に触発された新しい深層学習フレームワークを提案する。
本研究の目的は, 環境条件下での検知システムの精度と信頼性を高めることである。
論文 参考訳(メタデータ) (2024-10-02T04:03:07Z) - Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection [101.15777242546649]
Open vocabulary Object Detection (OVD) は、ベースと新規の両方のカテゴリからオブジェクトを認識できる最適なオブジェクト検出器を求めることを目的としている。
近年の進歩は、知識蒸留を利用して、事前訓練された大規模視覚言語モデルからオブジェクト検出のタスクに洞察力のある知識を伝達している。
本稿では,暗黙的背景知識を活用するための学習バックグラウンドプロンプトを提案するため,LBPと呼ばれる新しいOVDフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-01T17:32:26Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
ディープラーニングに基づくオブジェクトポーズ推定の最近の進歩について論じる。
また、複数の入力データモダリティ、出力ポーズの自由度、オブジェクト特性、下流タスクについても調査した。
論文 参考訳(メタデータ) (2024-05-13T14:44:22Z) - Few-Shot Object Detection: Research Advances and Challenges [15.916463121997843]
Few-shot Object Detection (FSOD)は、少数の学習技術とオブジェクト検出技術を組み合わせて、注釈付きサンプルに制限のある新しいオブジェクトに迅速に適応する。
本稿では,近年のFSOD分野の進歩を概観する包括的調査を行う。
論文 参考訳(メタデータ) (2024-04-07T03:37:29Z) - Object Detectors in the Open Environment: Challenges, Solutions, and Outlook [95.3317059617271]
オープン環境のダイナミックで複雑な性質は、オブジェクト検出器に新しくて恐ろしい挑戦をもたらす。
本稿では,オープン環境におけるオブジェクト検出器の総合的なレビューと解析を行う。
データ/ターゲットの変化の次元に基づいて、4つの四分法(ドメイン外、カテゴリ外、堅牢な学習、漸進的な学習)を含むフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-24T19:32:39Z) - Remote Sensing Object Detection Meets Deep Learning: A Meta-review of
Challenges and Advances [51.70835702029498]
本稿では,ディープラーニングに基づくRSOD手法の最近の成果を概観する。
RSODの主な課題として,マルチスケールオブジェクト検出,回転オブジェクト検出,弱いオブジェクト検出,小さなオブジェクト検出,限られた監視を伴うオブジェクト検出の5つを挙げる。
また、RSODの分野で広く使用されているベンチマークデータセットと評価指標、およびRSODのアプリケーションシナリオについてもレビューする。
論文 参考訳(メタデータ) (2023-09-13T06:48:32Z) - Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey [10.665235711722076]
オブジェクト指向物体検出は、リモートセンシングにおいて最も基本的で困難なタスクの1つである。
近年,ディープラーニング技術を用いたオブジェクト指向物体検出の進歩が目覚ましい。
論文 参考訳(メタデータ) (2023-02-21T06:31:53Z) - A Survey on Deep Domain Adaptation and Tiny Object Detection Challenges,
Techniques and Datasets [11.911055871045715]
本研究では,コンピュータビジョンに基づく物体検出の課題と解法を,異なる手法を用いて分析した。
対象物検出に関わる課題を概説し, 歴史的, 比較分析による解を提示した。
論文 参考訳(メタデータ) (2021-07-16T14:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。