Time Series Classification of Supraglacial Lakes Evolution over Greenland Ice Sheet
- URL: http://arxiv.org/abs/2410.05638v1
- Date: Tue, 8 Oct 2024 02:42:15 GMT
- Title: Time Series Classification of Supraglacial Lakes Evolution over Greenland Ice Sheet
- Authors: Emam Hossain, Md Osman Gani, Devon Dunmire, Aneesh Subramanian, Hammad Younas,
- Abstract summary: The Greenland Ice Sheet (GrIS) has emerged as a significant contributor to global sea level rise, primarily due to increased meltwater runoff.
This study presents a computationally efficient time series classification approach that uses GMMs of the Reconstructed Phase Spaces (RPSs) to identify supraglacial lakes based on their seasonal evolution.
- Score: 2.4266997579486085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Greenland Ice Sheet (GrIS) has emerged as a significant contributor to global sea level rise, primarily due to increased meltwater runoff. Supraglacial lakes, which form on the ice sheet surface during the summer months, can impact ice sheet dynamics and mass loss; thus, better understanding these lakes' seasonal evolution and dynamics is an important task. This study presents a computationally efficient time series classification approach that uses Gaussian Mixture Models (GMMs) of the Reconstructed Phase Spaces (RPSs) to identify supraglacial lakes based on their seasonal evolution: 1) those that refreeze at the end of the melt season, 2) those that drain during the melt season, and 3) those that become buried, remaining liquid insulated a few meters beneath the surface. Our approach uses time series data from the Sentinel-1 and Sentinel-2 satellites, which utilize microwave and visible radiation, respectively. Evaluated on a GrIS-wide dataset, the RPS-GMM model, trained on a single representative sample per class, achieves 85.46% accuracy with Sentinel-1 data alone and 89.70% with combined Sentinel-1 and Sentinel-2 data. This performance significantly surpasses existing machine learning and deep learning models which require a large training data. The results demonstrate the robustness of the RPS-GMM model in capturing the complex temporal dynamics of supraglacial lakes with minimal training data.
Related papers
- Unicorn: U-Net for Sea Ice Forecasting with Convolutional Neural Ordinary Differential Equations [6.4020980835163765]
This paper introduces a novel deep architecture named Unicorn, designed to forecast weekly sea ice.
Our model integrates multiple time series images within its architecture to enhance its forecasting performance.
arXiv Detail & Related papers (2024-05-07T01:17:06Z) - Using Multi-Temporal Sentinel-1 and Sentinel-2 data for water bodies
mapping [40.996860106131244]
Climate change is intensifying extreme weather events, causing both water scarcity and severe rainfall unpredictability.
This paper aims to provide valuable insights for comprehensive water resource monitoring under diverse meteorological conditions.
arXiv Detail & Related papers (2024-01-05T18:11:08Z) - MT-IceNet -- A Spatial and Multi-Temporal Deep Learning Model for Arctic
Sea Ice Forecasting [0.31410342959104726]
We propose MT-IceNet - a UNet based spatial and multi-temporal (MT) deep learning model for forecasting Arctic sea ice concentration (SIC)
Our proposed model provides promising predictive performance for per-pixel SIC forecasting with up to 60% decrease in prediction error for a lead time of 6 months as compared to its state-of-the-art counterparts.
arXiv Detail & Related papers (2023-08-08T18:18:31Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
Global warming made the Arctic available for marine operations and created demand for reliable operational sea ice forecasts.
In this work, we investigate the performance of the U-Net model trained in two regimes for predicting sea ice for up to the next 10 days.
We show that this deep learning model can outperform simple baselines by a significant margin and improve its quality by using additional weather data and training on multiple regions.
arXiv Detail & Related papers (2022-10-17T09:14:35Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - Simulating surface height and terminus position for marine outlet
glaciers using a level set method with data assimilation [0.0]
We implement a data assimilation framework for integrating ice surface and terminus position observations into a numerical ice-flow model.
The model is also applied to simulate Helheim Glacier, a major tidewater-terminating glacier of the Greenland Ice Sheet.
arXiv Detail & Related papers (2022-01-28T16:45:37Z) - Probabilistic modeling of lake surface water temperature using a
Bayesian spatio-temporal graph convolutional neural network [55.41644538483948]
We propose to aggregate simulations of lake temperature at a certain depth together with a range of meteorological features.
This work demonstrates that the proposed model can deliver homogeneously good performance covering the whole lake surface.
Results are compared with a state-of-the-art Bayesian deep learning method.
arXiv Detail & Related papers (2021-09-27T09:19:53Z) - Semi-Supervised Video Deraining with Dynamic Rain Generator [59.71640025072209]
This paper proposes a new semi-supervised video deraining method, in which a dynamic rain generator is employed to fit the rain layer.
Specifically, such dynamic generator consists of one emission model and one transition model to simultaneously encode the spatially physical structure and temporally continuous changes of rain streaks.
Various prior formats are designed for the labeled synthetic and unlabeled real data, so as to fully exploit the common knowledge underlying them.
arXiv Detail & Related papers (2021-03-14T14:28:57Z) - Lake Ice Detection from Sentinel-1 SAR with Deep Learning [15.493845481313924]
We present a lake ice monitoring system based on the automatic analysis of Sentinel-1 Synthetic Aperture Radar (SAR) data with a deep neural network.
We cast ice detection as a two class (frozen, non-frozen) semantic problem and solve it using a state-of-the-art deep convolutional network (CNN)
We report results on two winters 2016 - 17 and 2017 - 18 and three alpine lakes in Switzerland.
arXiv Detail & Related papers (2020-02-17T16:31:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.