論文の概要: Holistic Unlearning Benchmark: A Multi-Faceted Evaluation for Text-to-Image Diffusion Model Unlearning
- arxiv url: http://arxiv.org/abs/2410.05664v1
- Date: Tue, 8 Oct 2024 03:30:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:19:21.113973
- Title: Holistic Unlearning Benchmark: A Multi-Faceted Evaluation for Text-to-Image Diffusion Model Unlearning
- Title(参考訳): ホロスティック・アンラーニングベンチマーク:テキストと画像の拡散モデルアンラーニングのための多面的評価
- Authors: Saemi Moon, Minjong Lee, Sangdon Park, Dongwoo Kim,
- Abstract要約: ソースコードとアーティファクトによる包括的な評価フレームワークをリリースします。
我々の研究は、特により複雑で現実的な状況において、あらゆる方法が副作用や制限を持っていることを明らかにしている。
- 参考スコア(独自算出の注目度): 8.831339626121848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As text-to-image diffusion models become advanced enough for commercial applications, there is also increasing concern about their potential for malicious and harmful use. Model unlearning has been proposed to mitigate the concerns by removing undesired and potentially harmful information from the pre-trained model. So far, the success of unlearning is mainly measured by whether the unlearned model can generate a target concept while maintaining image quality. However, unlearning is typically tested under limited scenarios, and the side effects of unlearning have barely been studied in the current literature. In this work, we thoroughly analyze unlearning under various scenarios with five key aspects. Our investigation reveals that every method has side effects or limitations, especially in more complex and realistic situations. By releasing our comprehensive evaluation framework with the source codes and artifacts, we hope to inspire further research in this area, leading to more reliable and effective unlearning methods.
- Abstract(参考訳): テキストと画像の拡散モデルが商用アプリケーションで十分に進歩するにつれて、悪意があり有害な使用の可能性についても懸念が高まっている。
モデルアンラーニングは、事前学習されたモデルから望ましくない、潜在的に有害な情報を除去することで、懸念を軽減するために提案されている。
これまでのところ、未学習の成功は、画像の品質を維持しながら、未学習モデルが目標概念を生成できるかどうかを主に測定している。
しかし、アンラーニングは通常限られたシナリオでテストされ、アンラーニングの副作用は現在の文献ではほとんど研究されていない。
本研究では,5つの重要な側面から,さまざまなシナリオ下でのアンラーニングを徹底的に分析する。
我々の研究は、特により複雑で現実的な状況において、あらゆる方法が副作用や制限を持っていることを明らかにしている。
ソースコードとアーティファクトを包括的に評価するフレームワークをリリースすることによって、この分野のさらなる研究を刺激し、より信頼性が高く効果的なアンラーニング手法を提供したいと思っています。
関連論文リスト
- Comprehensive Assessment and Analysis for NSFW Content Erasure in Text-to-Image Diffusion Models [16.60455968933097]
概念消去手法は、トレーニングデータセットからNSFWコンテンツをフィルタリングしても、必然的にNSFWコンテンツを生成できる。
テキスト・画像拡散モデルにおいて,NSFWコンテンツの概念消去手法とそのサブテーマを初めて体系的に検討した。
14の変種を持つ11の最先端ベースライン手法の総合評価を行う。
論文 参考訳(メタデータ) (2025-02-18T04:25:42Z) - EraseBench: Understanding The Ripple Effects of Concept Erasure Techniques [20.2544260436998]
概念消去技術は、テキスト・ツー・イメージ・モデルから不要な概念を取り除くことができる。
我々は,現在の概念消去技術の障害モードを体系的に検討する。
本稿では,概念消去手法をより深く評価するためのベンチマークであるEraseBENCHを紹介する。
以上の結果から,最先端技術でさえ品質維持に苦慮していることが明らかとなった。
論文 参考訳(メタデータ) (2025-01-16T20:42:17Z) - On the Fairness, Diversity and Reliability of Text-to-Image Generative Models [49.60774626839712]
マルチモーダル生成モデルは 彼らの公正さ、信頼性、そして誤用の可能性について 批判的な議論を呼んだ
組込み空間における摂動に対する応答を通じてモデルの信頼性を評価するための評価フレームワークを提案する。
本手法は, 信頼できない, バイアス注入されたモデルを検出し, バイアス前駆体の検索を行うための基礎となる。
論文 参考訳(メタデータ) (2024-11-21T09:46:55Z) - Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [92.99416966226724]
我々は、未学習アルゴリズムの有効性を頑健に評価するために設計された新しいVLMアンラーニングベンチマークであるFacial Identity Unlearning Benchmark (FIUBench)を紹介する。
情報ソースとその露出レベルを正確に制御する2段階評価パイプラインを適用した。
FIUBench 内の 4 つのベースライン VLM アンラーニングアルゴリズムの評価により,すべての手法がアンラーニング性能に制限されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-11-05T23:26:10Z) - Towards Understanding the Feasibility of Machine Unlearning [14.177012256360635]
未学習の難易度を定量化するための新しい指標のセットを提案する。
具体的には,学習を成功させるのに必要な条件を評価するために,いくつかの指標を提案する。
また、最も難解なサンプルを特定するためのランキング機構も提示する。
論文 参考訳(メタデータ) (2024-10-03T23:41:42Z) - Towards Robust Knowledge Unlearning: An Adversarial Framework for Assessing and Improving Unlearning Robustness in Large Language Models [19.015202590038996]
我々は、未学習モデルを攻撃する動的かつ自動化されたフレームワークであるDynamic Unlearning Attack (DUA)を設計する。
学習過程の堅牢性を効果的に向上する普遍的な枠組みであるLatent Adrial Unlearning (LAU)を提案する。
LAUは学習効率を53.5%以上改善し、近隣の知識の11.6%以下に減らし、モデルの一般的な能力にはほとんど影響を与えないことを示した。
論文 参考訳(メタデータ) (2024-08-20T09:36:04Z) - Safeguard Text-to-Image Diffusion Models with Human Feedback Inversion [51.931083971448885]
本稿では,Human Feedback Inversion (HFI) というフレームワークを提案する。
実験の結果,画像品質を維持しながら,好ましくないコンテンツ生成を著しく削減し,公的な領域におけるAIの倫理的展開に寄与することが示された。
論文 参考訳(メタデータ) (2024-07-17T05:21:41Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Defensive Unlearning with Adversarial Training for Robust Concept Erasure in Diffusion Models [42.734578139757886]
拡散モデル(DM)はテキスト・画像生成において顕著な成功を収めてきたが、安全性のリスクも生じている。
マシン・アンラーニングのテクニックは、概念消去としても知られ、これらのリスクに対処するために開発されている。
本研究は, 対人訓練(AT)の原理をマシン・アンラーニングに統合することにより, 概念消去の堅牢性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-05-24T05:47:23Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Holistic Evaluation of Text-To-Image Models [153.47415461488097]
我々はテキスト・ツー・イメージ・モデル(HEIM)の全体的評価という新しいベンチマークを導入する。
テキスト・イメージ・アライメント、画像品質、美学、独創性、推論、知識、バイアス、毒性、公正性、堅牢性、多言語性、効率性を含む12の側面を識別する。
以上の結果から,異なるモデルが異なる強みを示すことにより,すべての面において単一のモデルが優れているものはないことが明らかとなった。
論文 参考訳(メタデータ) (2023-11-07T19:00:56Z) - UMat: Uncertainty-Aware Single Image High Resolution Material Capture [2.416160525187799]
本研究では, 物体の単一拡散像から正規性, 特異性, 粗さを復元する学習手法を提案する。
本手法は材料デジタル化における不確実性をモデル化する問題に最初に対処する手法である。
論文 参考訳(メタデータ) (2023-05-25T17:59:04Z) - Harnessing the Power of Text-image Contrastive Models for Automatic
Detection of Online Misinformation [50.46219766161111]
誤情報識別の領域における構成的学習を探求する自己学習モデルを構築した。
本モデルでは、トレーニングデータが不十分な場合、非マッチング画像-テキストペア検出の優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-19T02:53:59Z) - Learnware: Small Models Do Big [69.88234743773113]
自然言語処理やコンピュータビジョンの応用で目覚ましい成果を上げてきた、一般的なビッグモデルパラダイムは、これらの問題にまだ対応していないが、炭素排出量の深刻な源となっている。
この記事では、マシンラーニングモデルをスクラッチから構築する必要がないようにするための学習ソフトウェアパラダイムの概要を紹介します。
論文 参考訳(メタデータ) (2022-10-07T15:55:52Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
本研究では,ウェアラブル型行動認識タスクにおけるコントラスト学習について検討する。
本稿では,PyTorchライブラリのtextttCL-HAR について述べる。
論文 参考訳(メタデータ) (2022-02-12T06:10:15Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。