Compressed space quantum approximate optimization algorithm for constrained combinatorial optimization
- URL: http://arxiv.org/abs/2410.05703v1
- Date: Tue, 8 Oct 2024 05:48:46 GMT
- Title: Compressed space quantum approximate optimization algorithm for constrained combinatorial optimization
- Authors: Tatsuhiko Shirai, Nozomu Togawa,
- Abstract summary: We introduce a method for engineering a compressed space that represents the feasible solution space with fewer qubits than the original.
We then propose compressed space QAOA, which seeks near-optimal solutions within this reduced space.
- Score: 6.407238428292173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combinatorial optimization is a promising area for achieving quantum speedup. Quantum approximate optimization algorithm (QAOA) is designed to search for low-energy states of the Ising model, which correspond to near-optimal solutions of combinatorial optimization problems (COPs). However, effectively dealing with constraints of COPs remains a significant challenge. Existing methods, such as tailoring mixing operators, are typically limited to specific constraint types, like one-hot constraints. To address these limitations, we introduce a method for engineering a compressed space that represents the feasible solution space with fewer qubits than the original. Our approach includes a scalable technique for determining the unitary transformation between the compressed and original spaces on gate-based quantum computers. We then propose compressed space QAOA, which seeks near-optimal solutions within this reduced space, while utilizing the Ising model formulated in the original Hilbert space. Experimental results on a quantum simulator demonstrate the effectiveness of our method in solving various constrained COPs.
Related papers
- Compressed sensing enhanced by quantum approximate optimization algorithm [0.0]
We present a framework to deal with a range of large scale compressive sensing problems using a quantum subroutine.
Our results explore a promising path of applying quantum computers in the compressive sensing field.
arXiv Detail & Related papers (2024-03-26T05:26:51Z) - Post-processing variationally scheduled quantum algorithm for constrained combinatorial optimization problems [6.407238428292173]
We propose a post-processing variationally scheduled quantum algorithm (pVSQA) for solving constrained optimization problems (COPs)
pVSQA combines the variational methods and the post-processing technique.
We implement pVSQA on a quantum annealer and a gate-type quantum device.
arXiv Detail & Related papers (2023-09-15T03:09:16Z) - Constrained Optimization via Quantum Zeno Dynamics [23.391640416533455]
We introduce a technique that uses quantum Zeno dynamics to solve optimization problems with multiple arbitrary constraints, including inequalities.
We show that the dynamics of quantum optimization can be efficiently restricted to the in-constraint subspace on a fault-tolerant quantum computer.
arXiv Detail & Related papers (2022-09-29T18:00:40Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Constrained Quantum Optimization for Extractive Summarization on a
Trapped-ion Quantum Computer [13.528362112761805]
We show the largest-to-date execution of a quantum optimization algorithm that preserves constraints on quantum hardware.
We execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159.
We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware.
arXiv Detail & Related papers (2022-06-13T16:21:04Z) - Constrained mixers for the quantum approximate optimization algorithm [55.41644538483948]
We present a framework for constructing mixing operators that restrict the evolution to a subspace of the full Hilbert space.
We generalize the "XY"-mixer designed to preserve the subspace of "one-hot" states to the general case of subspaces given by a number of computational basis states.
Our analysis also leads to valid Trotterizations for "XY"-mixer with fewer CX gates than is known to date.
arXiv Detail & Related papers (2022-03-11T17:19:26Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.