Post-processing variationally scheduled quantum algorithm for constrained combinatorial optimization problems
- URL: http://arxiv.org/abs/2309.08120v3
- Date: Sun, 7 Apr 2024 12:48:53 GMT
- Title: Post-processing variationally scheduled quantum algorithm for constrained combinatorial optimization problems
- Authors: Tatsuhiko Shirai, Nozomu Togawa,
- Abstract summary: We propose a post-processing variationally scheduled quantum algorithm (pVSQA) for solving constrained optimization problems (COPs)
pVSQA combines the variational methods and the post-processing technique.
We implement pVSQA on a quantum annealer and a gate-type quantum device.
- Score: 6.407238428292173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a post-processing variationally scheduled quantum algorithm (pVSQA) for solving constrained combinatorial optimization problems (COPs). COPs are typically transformed into ground-state search problems of the Ising model on a quantum annealer or gate-type quantum device. Variational methods are used to find an optimal schedule function that leads to high-quality solutions in a short amount of time. Post-processing techniques convert the output solutions of the quantum devices to satisfy the constraints of the COPs. pVSQA combines the variational methods and the post-processing technique. We obtain a sufficient condition for constrained COPs to apply pVSQA based on a greedy post-processing algorithm. We apply the proposed method to two constrained NP-hard COPs: the graph partitioning problem and the quadratic knapsack problem. pVSQA on a simulator shows that a small number of variational parameters is sufficient to achieve a (near-)optimal performance within a predetermined operation time. Then building upon the simulator results, we implement pVSQA on a quantum annealer and a gate-type quantum device. The experimental results demonstrate the effectiveness of our proposed method.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Trainable Variational Quantum-Multiblock ADMM Algorithm for Generation
Scheduling [0.0]
This paper proposes a two-loop quantum solution algorithm for generation scheduling by quantum computing, machine learning, and distributed optimization.
The aim is to facilitate noisy employing near-term quantum machines with a limited number of qubits to solve practical power system problems.
arXiv Detail & Related papers (2023-03-28T21:31:39Z) - A Quantum Approach for Stochastic Constrained Binary Optimization [2.6803492658436032]
Quantum-based algorithms have been shown to generate high-quality solutions to hard problems.
This work puts forth quantum vectors to cope with binary quadratically constrained programs.
The method builds upon dual decomposition and entails solving a sequence of judiciously modified standard VQE tasks.
arXiv Detail & Related papers (2023-01-04T04:24:26Z) - Shuffle-QUDIO: accelerate distributed VQE with trainability enhancement
and measurement reduction [77.97248520278123]
We propose Shuffle-QUDIO to involve shuffle operations into local Hamiltonians during the quantum distributed optimization.
Compared with QUDIO, Shuffle-QUDIO significantly reduces the communication frequency among quantum processors and simultaneously achieves better trainability.
arXiv Detail & Related papers (2022-09-26T06:51:20Z) - Parameter-Parallel Distributed Variational Quantum Algorithm [7.255056332088222]
Variational quantum algorithms (VQAs) have emerged as a promising near-term technique to explore practical quantum advantage on noisy devices.
Here, we propose a parameter-parallel distributed variational quantum algorithm (PPD-VQA) to accelerate the training process by parameter-parallel training with multiple quantum processors.
The achieved results suggest that the PPD-VQA could provide a practical solution for coordinating multiple quantum processors to handle large-scale real-word applications.
arXiv Detail & Related papers (2022-07-31T15:09:12Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical
and Quantum Computers [3.04585143845864]
We present a decomposition-based approach to extend the applicability of current approaches to "quadratic plus convex" mixed binary optimization problems.
We show that the alternating direction method of multipliers (ADMM) can split the MBO into a binary unconstrained problem (that can be solved with quantum algorithms)
The validity of the approach is then showcased by numerical results obtained on several optimization problems via simulations with VQE and QAOA on the quantum circuits implemented in Qiskit.
arXiv Detail & Related papers (2020-01-07T14:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.