論文の概要: A First-Order Algorithm for Graph Learning from Smooth Signals Under Partial Observability
- arxiv url: http://arxiv.org/abs/2410.05707v1
- Date: Sat, 19 Oct 2024 14:54:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 16:59:10.138639
- Title: A First-Order Algorithm for Graph Learning from Smooth Signals Under Partial Observability
- Title(参考訳): 部分観測可能性下での滑らかな信号からのグラフ学習の一次アルゴリズム
- Authors: Chuansen Peng, Hanning Tang, Zhiguo Wang, Xiaojing Shen,
- Abstract要約: 滑らかな信号からグラフ構造を学ぶことは、データサイエンスとエンジニアリングにおいて重要な問題である。
既存の方法は大規模ネットワークに必要な実用的効率を欠くことが多い。
本稿では,部分的に観測されたノードを持つスムーズな信号からネットワークトポロジを推定する一階アルゴリズムフレームワークを提案する。
- 参考スコア(独自算出の注目度): 17.491343739469627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning graph structures from smooth signals is a significant problem in data science and engineering. A common challenge in real-world scenarios is the availability of only partially observed nodes. While some studies have considered hidden nodes and proposed various optimization frameworks, existing methods often lack the practical efficiency needed for large-scale networks or fail to provide theoretical convergence guarantees. In this paper, we address the problem of inferring network topologies from smooth signals with partially observed nodes. We propose a first-order algorithmic framework that includes two variants: one based on column sparsity regularization and the other on a low-rank constraint. We establish theoretical convergence guarantees and demonstrate the linear convergence rate of our algorithms. Extensive experiments on both synthetic and real-world data show that our results align with theoretical predictions, exhibiting not only linear convergence but also superior speed compared to existing methods. To the best of our knowledge, this is the first work to propose a first-order algorithmic framework for inferring network structures from smooth signals under partial observability, offering both guaranteed linear convergence and practical effectiveness for large-scale networks.
- Abstract(参考訳): 滑らかな信号からグラフ構造を学ぶことは、データサイエンスとエンジニアリングにおいて重要な問題である。
現実のシナリオにおける一般的な課題は、部分的に観測されたノードのみの可用性である。
隠れノードを考慮し、様々な最適化フレームワークを提案する研究もあるが、既存の手法は大規模ネットワークに必要な実用的効率を欠いている場合が多い。
本稿では,部分的に観測されたノードを持つスムーズな信号からネットワークトポロジを推定する問題に対処する。
本稿では,列間隔正規化に基づく1次アルゴリズムフレームワークと,低ランク制約に基づく1次アルゴリズムフレームワークを提案する。
我々は、理論収束保証を確立し、アルゴリズムの線形収束率を実証する。
合成データと実世界のデータの両方に対する大規模な実験により、我々の結果は理論上の予測と一致し、線形収束だけでなく、既存の手法よりも高速であることが示された。
我々の知る限りでは、線形収束と大規模ネットワークの実用性の両方を保証し、スムーズな信号からネットワーク構造を推定する1次アルゴリズムフレームワークを初めて提案する。
関連論文リスト
- Interacting Particle Systems on Networks: joint inference of the network
and the interaction kernel [8.535430501710712]
エージェント間の相互作用のルールを決定するネットワークとシステムの重み行列を推論する。
我々は2つのアルゴリズムを使用する: 1つは演算子回帰と呼ばれる新しいアルゴリズムで、最小2乗のデータを交互に更新する。
どちらのアルゴリズムも、識別可能性と適正性を保証するスケーラブルな条件である。
論文 参考訳(メタデータ) (2024-02-13T12:29:38Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
グラフニューラルネットワーク(GNN)は、様々なアプリケーションで例外的な効果を発揮している。
大規模グラフの重大化は,GNNによるリアルタイム推論において重要な課題となる。
本稿では,オンライン伝搬フレームワークと2つの新しいノード適応伝搬手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T05:03:00Z) - No Wrong Turns: The Simple Geometry Of Neural Networks Optimization
Paths [12.068608358926317]
1次最適化アルゴリズムは、ディープニューラルネットワークにおいて好ましいミニマを効率的に見つけることが知られている。
2つの鍵経路における標本最適化量の基本的な幾何学的性質に焦点をあてる。
以上の結果から,最適化トラジェクトリは大きな障害に遭遇しないだけでなく,ほとんどのトレーニングにおいて安定なダイナミクスも維持できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-06-20T22:10:40Z) - Towards Higher-order Topological Consistency for Unsupervised Network
Alignment [41.763907024585926]
完全教師なしネットワークアライメントフレームワークであるHTCを提案する。
提案した高次位相整合性は、エッジ軌道に基づいて定式化される。
エンコーダはマルチビット対応に訓練され、さらに信頼性の高いアンカーリンクを特定するように洗練される。
論文 参考訳(メタデータ) (2022-08-26T07:09:13Z) - Higher-order accurate two-sample network inference and network hashing [13.984114642035692]
ネットワーク比較のための2サンプル仮説テストは、多くの重要な課題を示す。
我々は,新しいメソッドとその変種を特徴とする包括的ツールボックスを開発した。
提案手法は,既存のツールの高速化と精度に優れ,電力効率が最適であることが証明された。
論文 参考訳(メタデータ) (2022-08-16T07:31:11Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - An Unbiased Symmetric Matrix Estimator for Topology Inference under
Partial Observability [16.60607849384252]
本稿では,部分観測可能性の枠組みに基づくネットワークトポロジ推論の問題について考察する。
本稿では、ガウス雑音とラプラシアン結合則を持つ対称ネットワークトポロジーのための新しい非バイアス推定器を提案する。
ネットワーク構造を推定するために、ネットワーク推論ガウスアルゴリズムと呼ばれる効果的なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-03-29T12:49:25Z) - The Sample Complexity of One-Hidden-Layer Neural Networks [57.6421258363243]
本研究では,スカラー値を持つ一層ネットワークのクラスとユークリッドノルムで有界な入力について検討する。
隠蔽層重み行列のスペクトルノルムの制御は、一様収束を保証するには不十分であることを示す。
スペクトルノルム制御が十分であることを示す2つの重要な設定を解析する。
論文 参考訳(メタデータ) (2022-02-13T07:12:02Z) - Unified Field Theory for Deep and Recurrent Neural Networks [56.735884560668985]
本稿では,再帰的ネットワークと深層ネットワークの両方に対する平均場理論の統一的,体系的な導出について述べる。
平均場理論への収束は、ディープネットワークよりもリカレントネットワークの方が典型的に遅い。
提案手法はガウス過程が1/n$の体系的展開の最下位次数であることを示す。
論文 参考訳(メタデータ) (2021-12-10T15:06:11Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
ネットワーク幅と収束時間の両方で既知の理論境界を大幅に改善することにより、理論と実践のギャップを埋める一歩を踏み出します。
本研究では, サンプルサイズが2次幅で, 両者の時間対数で線形なネットワークに対して, 地球最小値への収束が保証されていることを示す。
私たちの分析と収束境界は、いつでも合理的なサイズの同等のRELUネットワークに変換できる固定アクティベーションパターンを備えたサロゲートネットワークの構築によって導出されます。
論文 参考訳(メタデータ) (2021-01-12T00:40:45Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
検証問題に基づくアルゴリズムを反復的に導入し、2つの分割戦略を探索する。
また、ニューラルネットワークの検証問題を単純化するために、ニューロンアクティベーションフェーズを利用する、高度に並列化可能な前処理アルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-04-17T20:21:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。