論文の概要: TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation
- arxiv url: http://arxiv.org/abs/2410.05711v4
- Date: Fri, 21 Feb 2025 03:00:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 23:09:25.169734
- Title: TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation
- Title(参考訳): TimeDART: 自己監督型時系列表現のための拡散自己回帰変換器
- Authors: Daoyu Wang, Mingyue Cheng, Zhiding Liu, Qi Liu, Enhong Chen,
- Abstract要約: 我々は,新しい自己教師型時系列事前学習フレームワークであるTimeDARTを提案する。
TimeDARTは2つの強力な生成パラダイムを統合し、より伝達可能な表現を学ぶ。
時系列予測と分類のための公開データセットに関する広範な実験を行う。
- 参考スコア(独自算出の注目度): 47.58016750718323
- License:
- Abstract: Self-supervised learning has garnered increasing attention in time series analysis for benefiting various downstream tasks and reducing reliance on labeled data. Despite its effectiveness, existing methods often struggle to comprehensively capture both long-term dynamic evolution and subtle local patterns in a unified manner. In this work, we propose TimeDART, a novel self-supervised time series pre-training framework that unifies two powerful generative paradigms to learn more transferable representations. Specifically, we first employ a causal Transformer encoder, accompanied by a patch-based embedding strategy, to model the evolving trends from left to right. Building on this global modeling, we further introduce a denoising diffusion process to capture fine-grained local patterns through forward diffusion and reverse denoising. Finally, we optimize the model in an autoregressive manner. As a result, TimeDART effectively accounts for both global and local sequence features in a coherent way. We conduct extensive experiments on public datasets for time series forecasting and classification. The experimental results demonstrate that TimeDART consistently outperforms previous compared methods, validating the effectiveness of our approach. Our code is available at https://github.com/Melmaphother/TimeDART.
- Abstract(参考訳): 自己教師型学習は、様々な下流タスクの恩恵を受け、ラベル付きデータへの依存を減らすために、時系列分析において注目を集めている。
その効果にもかかわらず、既存の手法は、長期の動的進化と微妙な局所パターンを統一的な方法で包括的に捉えるのに苦労することが多い。
本研究では、2つの強力な生成パラダイムを統一し、より伝達可能な表現を学習する、新しい自己教師型時系列事前学習フレームワークであるTimeDARTを提案する。
具体的には、まず、パッチベースの埋め込み戦略を伴う因果変換器エンコーダを用いて、左から右への進化傾向をモデル化する。
この大域的モデリングに基づいて、我々はさらに、前方拡散と逆偏移を通したきめ細かな局所パターンを捕捉する分極拡散過程を導入する。
最後に、モデルを自己回帰的に最適化する。
その結果、TimeDARTはグローバルおよびローカルの両方のシーケンス機能を一貫性のある方法で効果的に説明できる。
時系列予測と分類のための公開データセットに関する広範な実験を行う。
実験の結果,TimeDARTは従来の比較手法より一貫して優れており,提案手法の有効性が検証された。
私たちのコードはhttps://github.com/Melmaphother/TimeDARTで利用可能です。
関連論文リスト
- Score as Action: Fine-Tuning Diffusion Generative Models by Continuous-time Reinforcement Learning [9.025671446527694]
人間のフィードバックからの強化学習(RLHF)は、信頼できる生成AIモデルを構築する上で重要なステップとなっている。
本研究は、連続時間RLを用いた微動拡散モデルに対する規律付きアプローチを開発することを目的とする。
論文 参考訳(メタデータ) (2025-02-03T20:50:05Z) - WaveGNN: Modeling Irregular Multivariate Time Series for Accurate Predictions [3.489870763747715]
実世界の時系列は、しばしば不整合タイムスタンプ、欠落したエントリ、可変サンプリングレートなどの不規則性を示す。
既存のアプローチは、しばしばバイアスを生じさせる計算に頼っている。
本稿では,不規則にサンプリングされた時系列データを埋め込んで正確な予測を行う新しいフレームワークWaveGNNを提案する。
論文 参考訳(メタデータ) (2024-12-14T00:03:44Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Large Scale Time-Series Representation Learning via Simultaneous Low and
High Frequency Feature Bootstrapping [7.0064929761691745]
本稿では,非コントラスト型自己教師型学習手法を提案する。
提案手法は生の時系列データを入力として、モデルの2つのブランチに対して2つの異なる拡張ビューを生成する。
モデルの堅牢性を実証するために,5つの実世界の時系列データセットに関する広範な実験とアブレーション研究を行った。
論文 参考訳(メタデータ) (2022-04-24T14:39:47Z) - Stacking VAE with Graph Neural Networks for Effective and Interpretable
Time Series Anomaly Detection [5.935707085640394]
本研究では,実効かつ解釈可能な時系列異常検出のための,グラフニューラルネットワークを用いた自動エンコーダ(VAE)モデルを提案する。
我々は,提案モデルが3つの公開データセットの強いベースラインを上回っており,大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-05-18T09:50:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。