論文の概要: WaveGNN: Modeling Irregular Multivariate Time Series for Accurate Predictions
- arxiv url: http://arxiv.org/abs/2412.10621v1
- Date: Sat, 14 Dec 2024 00:03:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:00:32.631809
- Title: WaveGNN: Modeling Irregular Multivariate Time Series for Accurate Predictions
- Title(参考訳): WaveGNN:精度予測のための不規則多変量時系列のモデル化
- Authors: Arash Hajisafi, Maria Despoina Siampou, Bita Azarijoo, Cyrus Shahabi,
- Abstract要約: 実世界の時系列は、しばしば不整合タイムスタンプ、欠落したエントリ、可変サンプリングレートなどの不規則性を示す。
既存のアプローチは、しばしばバイアスを生じさせる計算に頼っている。
本稿では,不規則にサンプリングされた時系列データを埋め込んで正確な予測を行う新しいフレームワークWaveGNNを提案する。
- 参考スコア(独自算出の注目度): 3.489870763747715
- License:
- Abstract: Accurately modeling and analyzing time series data is crucial for downstream applications across various fields, including healthcare, finance, astronomy, and epidemiology. However, real-world time series often exhibit irregularities such as misaligned timestamps, missing entries, and variable sampling rates, complicating their analysis. Existing approaches often rely on imputation, which can introduce biases. A few approaches that directly model irregularity tend to focus exclusively on either capturing intra-series patterns or inter-series relationships, missing the benefits of integrating both. To this end, we present WaveGNN, a novel framework designed to directly (i.e., no imputation) embed irregularly sampled multivariate time series data for accurate predictions. WaveGNN utilizes a Transformer-based encoder to capture intra-series patterns by directly encoding the temporal dynamics of each time series. To capture inter-series relationships, WaveGNN uses a dynamic graph neural network model, where each node represents a sensor, and the edges capture the long- and short-term relationships between them. Our experimental results on real-world healthcare datasets demonstrate that WaveGNN consistently outperforms existing state-of-the-art methods, with an average relative improvement of 14.7% in F1-score when compared to the second-best baseline in cases with extreme sparsity. Our ablation studies reveal that both intra-series and inter-series modeling significantly contribute to this notable improvement.
- Abstract(参考訳): 時系列データの正確なモデリングと分析は、医療、金融、天文学、疫学など、様々な分野の下流の応用に不可欠である。
しかし、実世界の時系列は、しばしば不整合タイムスタンプ、欠落エントリ、変動サンプリングレートなどの不規則性を示し、解析を複雑にしている。
既存のアプローチは、しばしばバイアスを生じさせる計算に頼っている。
不規則を直接モデル化するいくつかのアプローチは、シリーズ内パターンのキャプチャやシリーズ間関係の取得にのみフォーカスする傾向があり、両方を統合するメリットが欠如している。
この目的のために,不規則にサンプリングされた多変量時系列データを直接埋め込んで正確な予測を行う新しいフレームワークであるWaveGNNを提案する。
WaveGNNはTransformerベースのエンコーダを使用して、各時系列の時間的ダイナミクスを直接符号化することで、シリーズ内のパターンをキャプチャする。
シリーズ間の関係をキャプチャするために、WaveGNNは動的グラフニューラルネットワークモデルを使用しており、各ノードはセンサーを表し、エッジはその間の長期的および短期的な関係をキャプチャする。
実世界の医療データセットに関する実験結果は、WaveGNNが既存の最先端の手法を一貫して上回り、極端に親密な場合の2番目に高いベースラインと比較して、F1スコアの平均相対的改善率は14.7%であることを示している。
本研究は,シリーズ内モデルとシリーズ間モデリングの両方が,この顕著な改善に大きく寄与していることを示す。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Inference of Sequential Patterns for Neural Message Passing in Temporal Graphs [0.6562256987706128]
HYPA-DBGNNは、グラフ上の時系列データにおける異常なシーケンシャルパターンの推論を組み合わせた、新しい2段階のアプローチである。
本手法は超幾何グラフアンサンブルを利用して1階グラフと高階グラフの両方において異常なエッジを同定する。
我々の研究は、時間的および因果配列異常を利用した統計的に情報を得たGNNを初めて導入した。
論文 参考訳(メタデータ) (2024-06-24T11:41:12Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Hierarchical Joint Graph Learning and Multivariate Time Series
Forecasting [0.16492989697868887]
本稿では,相互依存を示すエッジを持つグラフにおいて,多変量信号をノードとして表現する方法を提案する。
我々はグラフニューラルネットワーク(GNN)とアテンションメカニズムを活用し、時系列データ内の基礎となる関係を効率的に学習する。
提案モデルの有効性を,長期予測タスク用に設計された実世界のベンチマークデータセットで評価した。
論文 参考訳(メタデータ) (2023-11-21T14:24:21Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Spectral Temporal Graph Neural Network for Multivariate Time-series
Forecasting [19.50001395081601]
StemGNNはシリーズ間の相関と時間的依存関係をキャプチャする。
畳み込みと逐次学習モジュールによって効果的に予測できる。
StemGNNの有効性を示すために、10の実世界のデータセットに関する広範な実験を実施します。
論文 参考訳(メタデータ) (2021-03-13T13:44:20Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
多変量時系列の異常検出は、データマイニング研究と産業応用の両方において非常に重要である。
1つの大きな制限は、異なる時系列間の関係を明示的に捉えないことである。
この問題に対処するために,多変量時系列異常検出のための新しい自己教師型フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-04T07:46:19Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。