論文の概要: Cefdet: Cognitive Effectiveness Network Based on Fuzzy Inference for Action Detection
- arxiv url: http://arxiv.org/abs/2410.05771v1
- Date: Thu, 17 Oct 2024 03:16:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 12:59:37.059093
- Title: Cefdet: Cognitive Effectiveness Network Based on Fuzzy Inference for Action Detection
- Title(参考訳): Cefdet:行動検出のためのファジィ推論に基づく認知効果ネットワーク
- Authors: Zhe Luo, Weina Fu, Shuai Liu, Saeed Anwar, Muhammad Saqib, Sambit Bakshi, Khan Muhammad,
- Abstract要約: 本研究ではファジィ推論(Cefdet)に基づく認知効果ネットワークを提案する。
人間の認知をシミュレートする「認知に基づく検出」の概念を導入する。
Cefdetは、公開データセット上のいくつかの主流アルゴリズムに対して、優れたパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 28.351392623225504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Action detection and understanding provide the foundation for the generation and interaction of multimedia content. However, existing methods mainly focus on constructing complex relational inference networks, overlooking the judgment of detection effectiveness. Moreover, these methods frequently generate detection results with cognitive abnormalities. To solve the above problems, this study proposes a cognitive effectiveness network based on fuzzy inference (Cefdet), which introduces the concept of "cognition-based detection" to simulate human cognition. First, a fuzzy-driven cognitive effectiveness evaluation module (FCM) is established to introduce fuzzy inference into action detection. FCM is combined with human action features to simulate the cognition-based detection process, which clearly locates the position of frames with cognitive abnormalities. Then, a fuzzy cognitive update strategy (FCS) is proposed based on the FCM, which utilizes fuzzy logic to re-detect the cognition-based detection results and effectively update the results with cognitive abnormalities. Experimental results demonstrate that Cefdet exhibits superior performance against several mainstream algorithms on the public datasets, validating its effectiveness and superiority.
- Abstract(参考訳): アクション検出と理解はマルチメディアコンテンツの生成と相互作用の基礎となる。
しかし、既存の手法は主に複雑な関係推論ネットワークの構築に重点を置いており、検出の有効性の判断を見越している。
さらに、これらの手法は認知異常を伴う検出結果を頻繁に生成する。
この問題を解決するために,ファジィ推論に基づく認知効果ネットワーク(Cefdet)を提案する。
まず、ファジィ推論を行動検出に導入するために、ファジィ駆動認知効果評価モジュール(FCM)を確立する。
FCMは人間の行動特徴と組み合わせて認知に基づく検出プロセスをシミュレートし、認知異常のあるフレームの位置を明確に特定する。
次に、ファジィ論理を用いて認識に基づく検出結果を再検出し、認知異常のある結果を効果的に更新するファジィ認知更新戦略(FCS)を提案する。
実験により、Cefdetは、公開データセット上のいくつかの主流アルゴリズムに対して優れた性能を示し、その有効性と優越性を検証した。
関連論文リスト
- PhoGAD: Graph-based Anomaly Behavior Detection with Persistent Homology
Optimization [24.915797951829443]
PhoGADはグラフベースの異常検出フレームワークである。
永続的ホモロジー最適化を利用して行動境界を明らかにする。
侵入、トラフィック、スパムデータセットの実験により、PhoGADが検出有効性において最先端(SOTA)フレームワークのパフォーマンスを上回ったことが確認された。
論文 参考訳(メタデータ) (2024-01-19T08:13:10Z) - BDHT: Generative AI Enables Causality Analysis for Mild Cognitive Impairment [34.60961915466469]
軽度認知障害 (MCI) 解析に有効な接続性を推定するために, 階層型トランスフォーマー (BDHT) を用いた脳ディフューザを提案する。
提案手法は,既存手法に比べて精度と頑健性に優れる。
論文 参考訳(メタデータ) (2023-12-14T15:12:00Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
下流推論に重点を置く因果発見手法の評価において,顕著なギャップが存在する。
我々は,GFlowNetsに基づく新たな手法を含む,確立された7つの基本因果探索手法を評価する。
研究の結果,研究対象のアルゴリズムのいくつかは,多種多様なATEモードを効果的に捉えることができることがわかった。
論文 参考訳(メタデータ) (2023-07-11T02:58:10Z) - Fusing Structural and Functional Connectivities using Disentangled VAE
for Detecting MCI [9.916963496386089]
階層型構造機能接続ファジング(HSCF)モデルを提案し,脳構造機能接続行列を構築した。
公的なアルツハイマー病神経画像イニシアチブデータベース上で行われた幅広いテストの結果、提案モデルは競合するアプローチよりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-06-16T05:22:25Z) - Interpretable Fusion Analytics Framework for fMRI Connectivity: Self-Attention Mechanism and Latent Space Item-Response Model [0.4893345190925178]
本稿では,ディープラーニングプロセスの分類結果を解釈する新しい分析フレームワークを提案する。
この枠組みを4種類の認知障害に適用することにより,本手法が重要なROI関数の決定に有効であることを示す。
論文 参考訳(メタデータ) (2022-07-04T17:01:18Z) - Confounder Identification-free Causal Visual Feature Learning [84.28462256571822]
本稿では,創始者を特定する必要性を排除した,創始者同定自由因果視覚特徴学習(CICF)手法を提案する。
CICFは、フロントドア基準に基づいて異なるサンプル間の介入をモデル化し、インスタンスレベルの介入に対するグローバルスコープ干渉効果を近似する。
我々は,CICFと一般的なメタラーニング戦略MAMLの関係を明らかにするとともに,MAMLが理論的観点から機能する理由を解釈する。
論文 参考訳(メタデータ) (2021-11-26T10:57:47Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
ニューラルネットワークでは、あらゆる相互作用する特徴は共通の隠蔽ユニットとの強い重み付けの接続に従う必要がある。
本稿では, 永続的ホモロジーの理論に基づいて, 相互作用強度を定量化するための新しい尺度を提案する。
PID(Persistence Interaction Detection)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-10-25T02:15:24Z) - Towards Understanding the Adversarial Vulnerability of Skeleton-based
Action Recognition [133.35968094967626]
骨格に基づく行動認識は、動的状況への強い適応性から注目を集めている。
ディープラーニング技術の助けを借りて、かなり進歩し、現在、良識のある環境で約90%の精度を達成している。
異なる対角的環境下での骨格に基づく行動認識の脆弱性に関する研究はいまだ研究されていない。
論文 参考訳(メタデータ) (2020-05-14T17:12:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。