論文の概要: Image Quality Assessment: Investigating Causal Perceptual Effects with Abductive Counterfactual Inference
- arxiv url: http://arxiv.org/abs/2412.16939v1
- Date: Sun, 22 Dec 2024 09:17:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:58:19.243979
- Title: Image Quality Assessment: Investigating Causal Perceptual Effects with Abductive Counterfactual Inference
- Title(参考訳): 画像品質評価 : 帰納的対物推論による因果知覚効果の検討
- Authors: Wenhao Shen, Mingliang Zhou, Yu Chen, Xuekai Wei, Jun Luo, Huayan Pu, Weijia Jia,
- Abstract要約: 既存のフルリファレンス画像品質評価法(FR-IQA)は、画像歪みに対する人間の知覚応答を弱める複雑な因果メカニズムを捉えるのに失敗することが多い。
本稿では,深いネットワーク特徴と知覚歪みの因果関係を明らかにするために,帰納的反事実推論に基づくFR-IQA法を提案する。
- 参考スコア(独自算出の注目度): 22.65765161695905
- License:
- Abstract: Existing full-reference image quality assessment (FR-IQA) methods often fail to capture the complex causal mechanisms that underlie human perceptual responses to image distortions, limiting their ability to generalize across diverse scenarios. In this paper, we propose an FR-IQA method based on abductive counterfactual inference to investigate the causal relationships between deep network features and perceptual distortions. First, we explore the causal effects of deep features on perception and integrate causal reasoning with feature comparison, constructing a model that effectively handles complex distortion types across different IQA scenarios. Second, the analysis of the perceptual causal correlations of our proposed method is independent of the backbone architecture and thus can be applied to a variety of deep networks. Through abductive counterfactual experiments, we validate the proposed causal relationships, confirming the model's superior perceptual relevance and interpretability of quality scores. The experimental results demonstrate the robustness and effectiveness of the method, providing competitive quality predictions across multiple benchmarks. The source code is available at https://anonymous.4open.science/r/DeepCausalQuality-25BC.
- Abstract(参考訳): 既存のフルリファレンス画像品質評価法(FR-IQA)は、画像歪みに対する人間の知覚応答を弱める複雑な因果メカニズムを捉えることができず、様々なシナリオにまたがって一般化する能力を制限している。
本稿では,深いネットワーク特徴と知覚歪みの因果関係を調べるために,帰納的反事実推定に基づくFR-IQA法を提案する。
まず、深い特徴が知覚に与える影響について検討し、因果推論を特徴比較と統合し、様々なIQAシナリオにおける複雑な歪みタイプを効果的に扱うモデルを構築する。
第2に,提案手法の知覚因果関係の解析はバックボーンアーキテクチャとは独立であり,様々なディープネットワークに適用可能である。
帰納的反事実実験を通じて,提案した因果関係を検証し,モデルが品質スコアの知覚的関連性と解釈可能性に優れていることを確認する。
実験の結果,提案手法の堅牢性と有効性を示し,複数のベンチマークで競合品質の予測を行うことができた。
ソースコードはhttps://anonymous.4open.science/r/DeepCausalQuality-25BCで公開されている。
関連論文リスト
- Causal Perception Inspired Representation Learning for Trustworthy Image Quality Assessment [2.290956583394892]
我々は、因果知覚にインスパイアされた表現学習(CPRL)を通して信頼できるIQAモデルを構築することを提案する。
CPRLは主観的品質ラベルの因果関係として機能し、それは知覚できない逆境の摂動に不変である。
4つのベンチマークデータベース上での実験により,提案手法は,最先端の敵防衛法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-04-30T13:55:30Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
フェアネスとロバストネスの間に二分法が存在することを示し、フェアネスを達成するとモデルロバストネスを減少させる。
非線形モデルと異なるアーキテクチャの実験は、複数の視覚領域における理論的発見を検証する。
フェアネスとロバストネスの良好なトレードオフを達成するためのモデルを構築するための,シンプルで効果的なソリューションを提案する。
論文 参考訳(メタデータ) (2022-11-21T19:55:35Z) - How Tempering Fixes Data Augmentation in Bayesian Neural Networks [22.188535244056016]
テンパリングは、拡張のモデリングから生じる誤特定を暗黙的に減らし、すなわちデータとして示す。
温度は有効サンプルサイズの役割を模倣し、増強によって提供される情報の利得を反映している。
論文 参考訳(メタデータ) (2022-05-27T11:06:56Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Contrastive Reasoning in Neural Networks [26.65337569468343]
因果クラス依存性を識別する機能に基づいて構築された推論は、フィードフォワード推論と呼ばれる。
本稿では,コントラスト推論の構造を形式化し,ニューラルネットワークのコントラスト概念を抽出する手法を提案する。
平均精度の3.47%、2.56%、5.48%の改善を報告することにより、歪み下での対比認識の価値を実証する。
論文 参考訳(メタデータ) (2021-03-23T05:54:36Z) - Verifying the Causes of Adversarial Examples [5.381050729919025]
ニューラルネットワークのロバスト性は、入力に対するほとんど知覚できない摂動を含む敵の例によって挑戦される。
本稿では,敵対的事例の潜在的な原因の収集と,慎重に設計された制御実験による検証(あるいは部分的に検証)を行う。
実験の結果, 幾何学的要因はより直接的な原因であり, 統計的要因は現象を増大させることが明らかとなった。
論文 参考訳(メタデータ) (2020-10-19T16:17:20Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
ベイジアン深層学習モデルが従来のニューラルネットワークよりわずかに優れていることを示す。
予備的な調査は、初期化、アーキテクチャ、アクティベーション関数の選択によるバイアスの潜在的固有の役割を示している。
論文 参考訳(メタデータ) (2020-09-03T16:58:15Z) - A Critical View of the Structural Causal Model [89.43277111586258]
相互作用を全く考慮せずに原因と効果を識別できることが示される。
本稿では,因果モデルの絡み合った構造を模倣する新たな逆行訓練法を提案する。
我々の多次元手法は, 合成および実世界の両方のデータセットにおいて, 文献的手法よりも優れている。
論文 参考訳(メタデータ) (2020-02-23T22:52:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。