論文の概要: Reinforcement Learning From Imperfect Corrective Actions And Proxy Rewards
- arxiv url: http://arxiv.org/abs/2410.05782v1
- Date: Tue, 8 Oct 2024 08:04:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 12:49:50.758665
- Title: Reinforcement Learning From Imperfect Corrective Actions And Proxy Rewards
- Title(参考訳): 不完全な矯正行動とプロキシ・リワードによる強化学習
- Authors: Zhaohui Jiang, Xuening Feng, Paul Weng, Yifei Zhu, Yan Song, Tianze Zhou, Yujing Hu, Tangjie Lv, Changjie Fan,
- Abstract要約: 我々は、修正行動とプロキシ報酬(ICoPro)から反復学習と呼ばれる新しい値に基づく深部RLアルゴリズムを提案する。
様々なタスク(アタリゲームと高速道路での自動運転)に関する提案を実験的に検証する。
- 参考スコア(独自算出の注目度): 38.056359612828466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In practice, reinforcement learning (RL) agents are often trained with a possibly imperfect proxy reward function, which may lead to a human-agent alignment issue (i.e., the learned policy either converges to non-optimal performance with low cumulative rewards, or achieves high cumulative rewards but in undesired manner). To tackle this issue, we consider a framework where a human labeler can provide additional feedback in the form of corrective actions, which expresses the labeler's action preferences although this feedback may possibly be imperfect as well. In this setting, to obtain a better-aligned policy guided by both learning signals, we propose a novel value-based deep RL algorithm called Iterative learning from Corrective actions and Proxy rewards (ICoPro), which cycles through three phases: (1) Solicit sparse corrective actions from a human labeler on the agent's demonstrated trajectories; (2) Incorporate these corrective actions into the Q-function using a margin loss to enforce adherence to labeler's preferences; (3) Train the agent with standard RL losses regularized with a margin loss to learn from proxy rewards and propagate the Q-values learned from human feedback. Moreover, another novel design in our approach is to integrate pseudo-labels from the target Q-network to reduce human labor and further stabilize training. We experimentally validate our proposition on a variety of tasks (Atari games and autonomous driving on highway). On the one hand, using proxy rewards with different levels of imperfection, our method can better align with human preferences and is more sample-efficient than baseline methods. On the other hand, facing corrective actions with different types of imperfection, our method can overcome the non-optimality of this feedback thanks to the guidance from proxy reward.
- Abstract(参考訳): 実際には、強化学習(RL)エージェントは、しばしば不完全な代理報酬関数で訓練されるが、これは人間のエージェントによるアライメントの問題につながる可能性がある(つまり、学習ポリシーは、累積報酬が低い非最適パフォーマンスに収束するか、高い累積報酬を達成するが、望ましくない方法で達成される)。
この問題に対処するために、人間のラベル付け者が修正行動という形で追加のフィードバックを提供できるフレームワークを検討し、これはラベル付け者の行動嗜好を表現するものであるが、このフィードバックも不完全である可能性がある。
本設定では, 両者の学習信号によって導かれるより良い整合性を確保するために, 1) エージェントの指示された軌道上での人間のラベルからのスパースな補正動作, (2) マージンロスを用いてQ関数にこれらの補正動作を組み込んでラベルの嗜好を順守する, (3) 標準RL損失のエージェントを調整し, プロキシの報酬から学習し, Q-バリューを伝播する3段階の反復学習(ICoPro)と呼ばれる新しい価値ベース深度RLアルゴリズムを提案する。
さらに,本手法では,目標Qネットワークから擬似ラベルを統合することで,人的労力の低減とトレーニングの安定化を図る。
様々なタスク(アタリゲームや高速道路での自律走行)について,我々の提案を実験的に検証した。
一方,異なるレベルの不完全なプロキシ報酬を用いることで,提案手法はヒトの嗜好に適合し,ベースライン法よりもサンプリング効率がよい。
一方、異なる種類の不完全な修正行動に直面し、代行報酬のガイダンスにより、このフィードバックの非最適性を克服することができる。
関連論文リスト
- Adaptive Dense Reward: Understanding the Gap Between Action and Reward Space in Alignment [33.5805074836187]
Reinforcement Learning from Human Feedback (RLHF) は、Large Language Models (LLM) を人間の好みに合わせるのに非常に効果的であることが証明されている。
この制限は、RLHFが特定のトークンを強化または抑制すべきかどうかについての認識の欠如に起因している。
本稿では,様々なタスクに頑健に適用可能な適応的メッセージワイドRLHF'法を提案する。
論文 参考訳(メタデータ) (2024-10-23T16:16:15Z) - Improving Reinforcement Learning from Human Feedback Using Contrastive Rewards [26.40009657912622]
人間のフィードバックからの強化学習(RLHF)は、大きな言語モデル(LLM)を人間の好みに合わせるために使われる主流パラダイムである。
しかし、既存のRLHFは、様々な情報源からのノイズに対して脆弱で敏感な正確で情報的な報酬モデルに大きく依存している。
本研究では,報酬に対するペナルティ項を導入することで,報酬モデルの有効性を向上する。
論文 参考訳(メタデータ) (2024-03-12T14:51:57Z) - A Minimaximalist Approach to Reinforcement Learning from Human Feedback [49.45285664482369]
人間のフィードバックから強化学習を行うアルゴリズムとして,SPO(Self-Play Preference Optimization)を提案する。
我々のアプローチは、報酬モデルや不安定な敵の訓練を必要としないという点で最小主義である。
我々は,一連の継続的制御タスクにおいて,報酬モデルに基づくアプローチよりもはるかに効率的に学習できることを実証した。
論文 参考訳(メタデータ) (2024-01-08T17:55:02Z) - REBEL: A Regularization-Based Solution for Reward Overoptimization in Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
報酬関数とユーザの意図、価値観、社会的規範の相違は、現実世界で破滅的なものになる可能性がある。
人間の嗜好から報酬関数を学習することで、このミスアライメント作業を軽減するための現在の方法。
本稿では,ロボットRLHFフレームワークにおける報酬正規化の新たな概念を提案する。
論文 参考訳(メタデータ) (2023-12-22T04:56:37Z) - Adversarial Batch Inverse Reinforcement Learning: Learn to Reward from
Imperfect Demonstration for Interactive Recommendation [23.048841953423846]
我々は、強化学習の基礎となる報奨学習の問題に焦点をあてる。
従来のアプローチでは、報酬を得るための追加の手順を導入するか、最適化の複雑さを増大させる。
所望の特性を実現するために, バッチ逆強化学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-30T13:43:20Z) - A State Augmentation based approach to Reinforcement Learning from Human
Preferences [20.13307800821161]
優先に基づく強化学習は、クエリされたトラジェクトリペアのバイナリフィードバックを利用することで、この問題を解決しようとする。
本稿では,エージェントの報酬モデルが堅牢である状態拡張手法を提案する。
論文 参考訳(メタデータ) (2023-02-17T07:10:50Z) - Simultaneous Double Q-learning with Conservative Advantage Learning for
Actor-Critic Methods [133.85604983925282]
保守的アドバンテージ学習(SDQ-CAL)を用いた同時二重Q-ラーニングを提案する。
提案アルゴリズムはバイアスの少ない値推定を実現し,一連の連続制御ベンチマークタスクにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-08T09:17:16Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
我々は、フィードバックと非政治学習の両方の長所を生かした、非政治的、インタラクティブな強化学習アルゴリズムを提案する。
提案手法は,従来ヒト・イン・ザ・ループ法で検討されていたよりも複雑度の高いタスクを学習可能であることを実証する。
論文 参考訳(メタデータ) (2021-06-09T14:10:50Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
近年の研究では、深層強化学習剤は、エージェントの入力に対する小さな逆方向の摂動に弱いことが示されている。
敵攻撃に対する堅牢性を向上した強化学習エージェントを訓練するための原則的フレームワークであるRADIAL-RLを提案する。
論文 参考訳(メタデータ) (2020-08-05T07:49:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。