Contextual Bandits with Non-Stationary Correlated Rewards for User Association in MmWave Vehicular Networks
- URL: http://arxiv.org/abs/2410.05785v1
- Date: Tue, 8 Oct 2024 08:10:03 GMT
- Title: Contextual Bandits with Non-Stationary Correlated Rewards for User Association in MmWave Vehicular Networks
- Authors: Xiaoyang He, Xiaoxia Huang, Lanhua Li,
- Abstract summary: We propose a semi-distributed contextual correlated upper confidence bound (SD-CC-UCB) algorithm to establish an up-to-date user association without explicit measurement of channel state information (CSI)
Under a contextual multi-arm bandits framework, SD-CC-UCB learns and predicts the transmission rate given the location and velocity of the vehicle, which can adequately capture the intricate channel condition for a prompt decision on user association.
Our proposed algorithm achieves the network throughput within 100%-103% of a benchmark algorithm which requires perfect instantaneous CSI.
- Score: 2.5206846348004506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Millimeter wave (mmWave) communication has emerged as a propelling technology in vehicular communication. Usually, an appropriate decision on user association requires timely channel information between vehicles and base stations (BSs), which is challenging given a fast-fading mmWave vehicular channel. In this paper, relying solely on learning transmission rate, we propose a low-complexity semi-distributed contextual correlated upper confidence bound (SD-CC-UCB) algorithm to establish an up-to-date user association without explicit measurement of channel state information (CSI). Under a contextual multi-arm bandits framework, SD-CC-UCB learns and predicts the transmission rate given the location and velocity of the vehicle, which can adequately capture the intricate channel condition for a prompt decision on user association. Further, SD-CC-UCB efficiently identifies the set of candidate BSs which probably support supreme transmission rate by leveraging the correlated distributions of transmission rates on different locations. To further refine the learning transmission rate over the link to candidate BSs, each vehicle deploys the Thompson Sampling algorithm by taking the interference among vehicles and handover overhead into consideration. Numerical results show that our proposed algorithm achieves the network throughput within 100%-103% of a benchmark algorithm which requires perfect instantaneous CSI, demonstrating the effectiveness of SD-CC-UCB in vehicular communications.
Related papers
- Learning-Based User Association for MmWave Vehicular Networks With Kernelized Contextual Bandits [2.6488367729897693]
It is costly to estimate the fast-fading mmWave channels frequently.
The proposed Distributed Kernelized Upper Confidence Bound (DK-UCB) algorithm estimates the current instantaneous transmission rates.
We propose a novel kernel function in RKHS which incorporates the propagation characteristics of the mmWave signals.
arXiv Detail & Related papers (2025-04-15T08:05:27Z) - CVVLSNet: Vehicle Location and Speed Estimation Using Partial Connected Vehicle Trajectory Data [6.928899738499268]
Real-time estimation of vehicle locations and speeds is crucial for developing beneficial transportation applications.
Recent advances in communication technologies facilitate the emergence of connected vehicles (CVs)
This paper proposes a novel CV-based Vehicle Location and Speed estimation network, CVVLSNet.
arXiv Detail & Related papers (2024-09-30T18:13:26Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Selective Communication for Cooperative Perception in End-to-End
Autonomous Driving [8.680676599607123]
We propose a novel selective communication algorithm for cooperative perception.
Our algorithm is shown to produce higher success rates than a random selection approach on previously studied safety-critical driving scenario simulations.
arXiv Detail & Related papers (2023-05-26T18:13:17Z) - MOB-FL: Mobility-Aware Federated Learning for Intelligent Connected
Vehicles [21.615151912285835]
We consider a base station coordinating nearby ICVs to train a neural network in a collaborative yet distributed manner.
Due to the mobility of vehicles, the connections between the base station and ICVs are short-lived.
We propose an accelerated FL-ICV framework, by optimizing the duration of each training round and the number of local iterations.
arXiv Detail & Related papers (2022-12-07T08:53:53Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT)
The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications.
arXiv Detail & Related papers (2022-05-22T12:16:43Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - CNN aided Weighted Interpolation for Channel Estimation in Vehicular
Communications [4.6898263272139795]
IEEE 802.11p standard defines wireless technology protocols that enable vehicular transportation and manage traffic efficiency.
A major challenge in the development of this technology is ensuring communication reliability in highly dynamic vehicular environments.
In this paper, a novel deep learning (DL)-based weighted estimator is proposed to accurately estimate vehicular channels.
arXiv Detail & Related papers (2021-04-18T10:57:52Z) - Federated Learning on the Road: Autonomous Controller Design for
Connected and Autonomous Vehicles [109.71532364079711]
A new federated learning (FL) framework is proposed for designing the autonomous controller of connected and autonomous vehicles (CAVs)
A novel dynamic federated proximal (DFP) algorithm is proposed that accounts for the mobility of CAVs, the wireless fading channels, and the unbalanced and nonindependent and identically distributed data across CAVs.
A rigorous convergence analysis is performed for the proposed algorithm to identify how fast the CAVs converge to using the optimal controller.
arXiv Detail & Related papers (2021-02-05T19:57:47Z) - Efficient Online Learning for Cognitive Radar-Cellular Coexistence via
Contextual Thompson Sampling [9.805913930878]
This paper describes a sequential, or online, learning scheme for adaptive radar transmissions.
A linear Contextual Bandit (CB) learning framework is applied to drive the radar's behavior.
We show that the proposed Thompson Sampling (TS) algorithm maintains competitive performance with a more complex Deep Q-Network (DQN)
arXiv Detail & Related papers (2020-08-24T01:20:58Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.