論文の概要: Towards Zero-Shot, Controllable Dialog Planning with LLMs
- arxiv url: http://arxiv.org/abs/2410.05821v2
- Date: Tue, 04 Mar 2025 16:21:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:10:45.543901
- Title: Towards Zero-Shot, Controllable Dialog Planning with LLMs
- Title(参考訳): LLMによるゼロショット制御可能な対話計画に向けて
- Authors: Dirk Väth, Ngoc Thang Vu,
- Abstract要約: 大規模言語モデル(LLM)は、タスク固有のダイアログエージェントのトレーニングの代替として登場した。
本稿では,制御可能な会話木探索(CTS)エージェントのためのゼロショット手法を提案する。
- 参考スコア(独自算出の注目度): 28.392036110582723
- License:
- Abstract: Recently, Large Language Models (LLMs) have emerged as an alternative to training task-specific dialog agents, due to their broad reasoning capabilities and performance in zero-shot learning scenarios. However, many LLM-based dialog systems fall short in planning towards an overarching dialog goal and therefore cannot steer the conversation appropriately. Furthermore, these models struggle with hallucination, making them unsuitable for information access in sensitive domains, such as legal or medical domains, where correctness of information given to users is critical. The recently introduced task Conversational Tree Search (CTS) proposes the use of dialog graphs to avoid hallucination in sensitive domains, however, state-of-the-art agents are Reinforcement Learning (RL) based and require long training times, despite excelling at dialog strategy. This paper introduces a novel zero-shot method for controllable CTS agents, where LLMs guide the dialog planning through domain graphs by searching and pruning relevant graph nodes based on user interaction preferences. We show that these agents significantly outperform state-of-the-art CTS agents ($p<0.0001$; Barnard Exact test) in simulation. This generalizes to all available CTS domains. Finally, we perform user evaluation to test the agent's performance in the wild, showing that our policy significantly ($p<0.05$; Barnard Exact) improves task-success compared to the state-of-the-art RL-based CTS agent.
- Abstract(参考訳): 近年,タスク固有のダイアログエージェントの訓練の代替としてLarge Language Models (LLM) が登場している。
しかし,LLMをベースとした対話システムの多くは,対話目標の全体に向けての計画に不足しているため,会話を適切に操ることはできない。
さらに、これらのモデルは幻覚に苦しむため、ユーザに与えられる情報の正しさが重要となる法律や医療ドメインなどの機密ドメインの情報アクセスには適さない。
最近導入されたタスク会話木探索(CTS)では、機密領域における幻覚を避けるためにダイアロググラフが提案されているが、最先端のエージェントは強化学習(Reinforcement Learning, RL)であり、ダイアログ戦略が優れているにもかかわらず長いトレーニング時間を必要とする。
本稿では,ユーザインタラクションの嗜好に基づいた関連グラフノードの探索と解析により,LLMがドメイングラフを通してダイアログ計画のガイドを行う,制御可能なCTSエージェントのためのゼロショット手法を提案する。
これらのエージェントはシミュレーションにおいて最先端のCTSエージェント(p<0.0001$; Barnard Exact test)よりも優れていた。
これはすべての利用可能なCTSドメインに一般化される。
最後に、エージェントの性能を試験するためにユーザ評価を行い、我々のポリシー(p<0.05$; Barnard Exact)は、最先端のRLベースのCTSエージェントと比較してタスクの精度を著しく向上することを示した。
関連論文リスト
- QLASS: Boosting Language Agent Inference via Q-Guided Stepwise Search [89.97082652805904]
提案するQLASS(Q-guided Language Agent Stepwise Search)は,Q-valueを推定してアノテーションを自動的に生成する。
ステップワイズガイダンスにより、言語エージェントが長期的価値に適応できるようにQ誘導型生成戦略を提案する。
我々はQLASSが質的分析によってより効果的な意思決定につながることを実証的に実証した。
論文 参考訳(メタデータ) (2025-02-04T18:58:31Z) - SWE-Search: Enhancing Software Agents with Monte Carlo Tree Search and Iterative Refinement [18.84439000902905]
SWE-Searchは、MCTS(Monte Carlo Tree Search)と自己改善機構を統合し、ソフトウェアエージェントのパフォーマンスを向上させるマルチエージェントフレームワークである。
本研究は,複雑でダイナミックなソフトウェア工学環境において,エージェント推論と計画を強化する自己評価型検索技術の可能性を強調した。
論文 参考訳(メタデータ) (2024-10-26T22:45:56Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
本稿ではエージェント・アズ・ア・ジャッジ(Agent-as-a-Judge)フレームワークを紹介し,エージェント・システムを用いてエージェント・システムの評価を行う。
これはLLM-as-a-Judgeフレームワークの有機的拡張であり、タスク解決プロセス全体の中間フィードバックを可能にするエージェント的特徴を取り入れている。
55のリアルな自動化AI開発タスクのベンチマークであるDevAIを紹介します。
論文 参考訳(メタデータ) (2024-10-14T17:57:02Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
大規模言語モデル(LLM)エージェントとケースベース推論(CBR)を利用した新しいフレームワークであるDS-Agentを提案する。
開発段階では、DS-AgentはCBRフレームワークに従い、自動イテレーションパイプラインを構築する。
デプロイメントの段階では、DS-Agentは、シンプルなCBRパラダイムで低リソースのデプロイメントステージを実装し、LCMの基本能力に対する需要を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-27T12:26:07Z) - Credit-cognisant reinforcement learning for multi-agent cooperation [0.0]
エージェントは,その行動が環境および共同エージェントに与える影響を知覚することができる。
これらの経験を操り、それらに含まれる報酬を構成することで、すべてのエージェントが受け取る報酬を同一のアクションシーケンスに含めることで、独立した深層Q-ラーニングの性能を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2022-11-18T09:00:25Z) - TASAC: a twin-actor reinforcement learning framework with stochastic
policy for batch process control [1.101002667958165]
強化学習(Reinforcement Learning, RL)は、エージェントが環境と直接対話することでポリシーを学習し、この文脈において潜在的な代替手段を提供する。
アクター批判型アーキテクチャを持つRLフレームワークは、状態空間とアクション空間が連続しているシステムを制御するために最近人気になっている。
アクターと批評家のネットワークのアンサンブルは、同時に政策学習による探索の強化により、エージェントがより良い政策を学ぶのに役立つことが示されている。
論文 参考訳(メタデータ) (2022-04-22T13:00:51Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
本研究では,コミュニケーション制約下での運用を目的とした適応型分散学習戦略について検討する。
我々は,ストリーミングデータの連続的な観察から,オンライン最適化問題を解決しなければならないエージェントのネットワークを考える。
論文 参考訳(メタデータ) (2021-12-03T19:23:48Z) - RethinkCWS: Is Chinese Word Segmentation a Solved Task? [81.11161697133095]
中国語の単語(CWS)システムの性能は、ディープニューラルネットワークの急速な発展とともに、徐々に高水準に達している。
本稿では、私たちが達成した事柄の株式を取得し、CWSタスクに残されている事柄を再考する。
論文 参考訳(メタデータ) (2020-11-13T11:07:08Z) - Predictive Information Accelerates Learning in RL [50.52439807008805]
我々は、RL環境力学の予測情報の圧縮表現を学習する補助タスクで、画素からSoft Actor-Critic(SAC)エージェントを訓練する。
PI-SACエージェントは、連続制御環境のDM制御スイートからタスクのベースラインに挑戦するよりも、サンプル効率を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2020-07-24T08:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。