論文の概要: Multi-Session Client-Centered Treatment Outcome Evaluation in Psychotherapy
- arxiv url: http://arxiv.org/abs/2410.05824v1
- Date: Tue, 8 Oct 2024 08:54:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 12:39:56.675294
- Title: Multi-Session Client-Centered Treatment Outcome Evaluation in Psychotherapy
- Title(参考訳): 心理療法におけるマルチセッションクライアント中心治療成績評価
- Authors: Hongbin Na, Tao Shen, Shumao Yu, Ling Chen,
- Abstract要約: IPAEvalは、クライアントインフォームド心理学的評価に基づく評価フレームワークである。
臨床面接による治療結果の評価をクライアントの視点から自動化する。
IPAEvalは、複数のセッションにおける症状の重症度と治療結果を効果的に追跡し、以前のシングルセッションモデルより優れている。
- 参考スコア(独自算出の注目度): 9.299504332783325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In psychotherapy, therapeutic outcome assessment, or treatment outcome evaluation, is essential for enhancing mental health care by systematically evaluating therapeutic processes and outcomes. Existing large language model approaches often focus on therapist-centered, single-session evaluations, neglecting the client's subjective experience and longitudinal progress across multiple sessions. To address these limitations, we propose IPAEval, a client-Informed Psychological Assessment-based Evaluation framework that automates treatment outcome evaluations from the client's perspective using clinical interviews. IPAEval integrates cross-session client-contextual assessment and session-focused client-dynamics assessment to provide a comprehensive understanding of therapeutic progress. Experiments on our newly developed TheraPhase dataset demonstrate that IPAEval effectively tracks symptom severity and treatment outcomes over multiple sessions, outperforming previous single-session models and validating the benefits of items-aware reasoning mechanisms.
- Abstract(参考訳): 精神療法では、治療過程や結果を体系的に評価することにより、精神医療を強化するために、治療結果評価(英語版)または治療結果評価(英語版)が不可欠である。
既存の大きな言語モデルアプローチは、しばしばセラピスト中心のシングルセッションの評価に焦点を合わせ、クライアントの主観的な経験を無視し、複数のセッションをまたいだ長手な進捗を無視する。
これらの制約に対処するため,臨床面接による治療結果の評価を自動化するクライアントインフォームド心理学的評価に基づく評価フレームワークであるIPAEvalを提案する。
IPAEvalは、クロスセッションクライアントコンテキストアセスメントとセッション中心クライアントダイナミックスアセスメントを統合し、治療の進歩を包括的に理解する。
新たに開発したTheraPhaseデータセットの実験により,IPAEvalは複数のセッションにおける症状の重症度と治療成績を効果的に追跡し,従来のシングルセッションモデルより優れ,アイテム認識推論機構の利点を検証した。
関連論文リスト
- CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
認知行動療法(CBT)支援の体系的評価のための新しいベンチマークであるCBT-BENCHを提案する。
我々は, CBT-BENCHにおける3段階の課題を含む: I: 基本的CBT知識獲得, 複数選択質問のタスク; II: 認知的モデル理解, 認知的歪み分類, 主根的信念分類, きめ細かい中核信念分類のタスク; III: 治療的応答生成, CBTセラピーセッションにおける患者音声に対する応答生成のタスク。
実験結果から,LLMはCBT知識のリサイティングに優れるが,複雑な実世界のシナリオでは不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-17T04:52:57Z) - COMPASS: Computational Mapping of Patient-Therapist Alliance Strategies with Language Modeling [14.04866656172336]
心理療法セッションで使用される自然言語から治療作業同盟を推定するための新しい枠組みを提案する。
提案手法は,高度大規模言語モデル(LLM)を用いて心理療法セッションの転写を解析し,それらをワーキングアライアンスインベントリにおけるステートメントの分散表現と比較する。
論文 参考訳(メタデータ) (2024-02-22T16:56:44Z) - Routine Outcome Monitoring in Psychotherapy Treatment using
Sentiment-Topic Modelling Approach [10.944940802875573]
患者の経過を継続的に監視することは、治療結果を大幅に改善し、期待される変化をもたらす可能性がある。
現在,評価システムは臨床評価と自己報告に基づく。
治療経過の経過を計測・監視するための計算方法が必要である。
論文 参考訳(メタデータ) (2022-12-08T20:14:10Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
戦略トレーニング (Strategy Training) とは、脳卒中後の認知障害患者に障害を減らすためのスキルを教える、リハビリテーションのアプローチである。
標準化された忠実度評価は治療原則の遵守度を測定するために用いられる。
本研究では,ルールベースNLPアルゴリズム,長短項メモリ(LSTM)モデル,および変換器(BERT)モデルからの双方向エンコーダ表現を開発した。
論文 参考訳(メタデータ) (2022-09-14T15:33:30Z) - "Am I A Good Therapist?" Automated Evaluation Of Psychotherapy Skills
Using Speech And Language Technologies [38.726068038788384]
5000以上のレコードのデータセットを使用して、当社のプラットフォームとそのパフォーマンスを説明します。
本システムでは,セッションのダイナミクスに関する情報を含む包括的フィードバックをセラピストに提供する。
我々は、近い将来、自動精神療法評価ツールの広範な利用が専門家の能力を増強すると確信している。
論文 参考訳(メタデータ) (2021-02-22T18:52:52Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
本研究の目的は, 介入を最適化する強化学習(RL)が, 学習方針の治験に対する規制に適合する経路を遡及的に得る枠組みを確立することである。
我々は,死の主な原因の一つであり,複雑で不透明な患者動態のため治療が困難である集中治療室の感染症に焦点を当てた。
論文 参考訳(メタデータ) (2020-03-13T20:31:47Z) - A Review of Computational Approaches for Evaluation of Rehabilitation
Exercises [58.720142291102135]
本稿では,モーションキャプチャシステムを用いたリハビリテーションプログラムにおける患者のパフォーマンスを評価するための計算手法についてレビューする。
エクササイズ評価のための再検討された計算手法は, 離散的な運動スコア, ルールベース, テンプレートベースアプローチの3つのカテゴリに分類される。
論文 参考訳(メタデータ) (2020-02-29T22:18:56Z) - Opportunities of a Machine Learning-based Decision Support System for
Stroke Rehabilitation Assessment [64.52563354823711]
リハビリテーションアセスメントは、患者の適切な介入を決定するために重要である。
現在の評価の実践は、主にセラピストの経験に依存しており、セラピストの可用性が限られているため、アセスメントは頻繁に実施される。
我々は、強化学習を用いて評価の健全な特徴を識別できるインテリジェントな意思決定支援システムを開発した。
論文 参考訳(メタデータ) (2020-02-27T17:04:07Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。