Give me a hint: Can LLMs take a hint to solve math problems?
- URL: http://arxiv.org/abs/2410.05915v1
- Date: Tue, 8 Oct 2024 11:09:31 GMT
- Title: Give me a hint: Can LLMs take a hint to solve math problems?
- Authors: Vansh Agrawal, Pratham Singla, Amitoj Singh Miglani, Shivank Garg, Ayush Mangal,
- Abstract summary: We propose giving "hints" to improve the language model's performance on advanced mathematical problems.
We also test the model's adversarial robustness to wrong hints.
- Score: 0.5742190785269342
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While many state-of-the-art LLMs have shown poor logical and basic mathematical reasoning, recent works try to improve their problem-solving abilities using prompting techniques. We propose giving "hints" to improve the language model's performance on advanced mathematical problems, taking inspiration from how humans approach math pedagogically. We also test the model's adversarial robustness to wrong hints. We demonstrate the effectiveness of our approach by evaluating various LLMs, presenting them with a diverse set of problems of different difficulties and topics from the MATH dataset and comparing against techniques such as one-shot, few-shot, and chain of thought prompting.
Related papers
- AI-Assisted Generation of Difficult Math Questions [78.7547836422727]
Current training positions mathematical reasoning as a core capability.
There is unmet demand for diverse and challenging math questions.
We present a design framework that combines the strengths of LLMs with a human-in-the-loop approach.
arXiv Detail & Related papers (2024-07-30T17:55:36Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBench is a new benchmark that rigorously assesses the mathematical capabilities of large language models.
MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills.
arXiv Detail & Related papers (2024-05-20T17:52:29Z) - Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems [50.76385564061713]
Chain-of-Thought (CoT) prompting has enhanced the performance of Large Language Models (LLMs) across various reasoning tasks.
CoT usually suffers from three pitfalls: semantic misunderstanding errors, calculation errors, and step-missing errors.
We propose Deeply Understanding the Problems (DUP) to improve the LLMs' math problem-solving ability by addressing semantic misunderstanding errors.
arXiv Detail & Related papers (2024-04-23T12:16:05Z) - Distilling Algorithmic Reasoning from LLMs via Explaining Solution Programs [2.3020018305241337]
Distilling explicit chain-of-thought reasoning paths has emerged as an effective method for improving the reasoning abilities of large language models.
We propose a novel approach to distill reasoning abilities from LLMs by leveraging their capacity to explain solutions.
Our experiments demonstrate that learning from explanations enables the Reasoner to more effectively guide program implementation by a Coder.
arXiv Detail & Related papers (2024-04-11T22:19:50Z) - MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems? [99.0305256706604]
We introduce MathVerse, an all-around visual math benchmark designed for an equitable and in-depth evaluation of MLLMs.
We meticulously collect 2,612 high-quality, multi-subject math problems with diagrams from publicly available sources.
This approach allows MathVerse to comprehensively assess whether and how much MLLMs can truly understand the visual diagrams for mathematical reasoning.
arXiv Detail & Related papers (2024-03-21T17:59:50Z) - FineMath: A Fine-Grained Mathematical Evaluation Benchmark for Chinese Large Language Models [44.63505885248145]
FineMath is a fine-grained mathematical evaluation benchmark dataset for assessing Chinese Large Language Models (LLMs)
FineMath is created to cover the major key mathematical concepts taught in elementary school math, which are divided into 17 categories of math word problems.
All the 17 categories of math word problems are manually annotated with their difficulty levels according to the number of reasoning steps required to solve these problems.
arXiv Detail & Related papers (2024-03-12T15:32:39Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
We study the biases of large language models (LLMs) in relation to those known in children when solving arithmetic word problems.
We generate a novel set of word problems for each of these tests, using a neuro-symbolic approach that enables fine-grained control over the problem features.
arXiv Detail & Related papers (2024-01-31T18:48:20Z) - Learning Multi-Step Reasoning by Solving Arithmetic Tasks [6.398022050054328]
This work investigates how to incorporate relatively small Language Models with the capabilities of multi-step reasoning.
We propose to inject such abilities by continually pre-training LMs on a synthetic dataset MsAT.
Our experiments on four math word problem datasets show the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-06-02T17:29:22Z) - MathPrompter: Mathematical Reasoning using Large Language Models [7.953723258038284]
Large Language Models (LLMs) have limited performance when solving arithmetic reasoning tasks.
MathPrompter uses the Zero-shot chain-of-thought prompting technique to generate multiple Algebraic expressions or Python functions to solve the same math problem in different ways.
arXiv Detail & Related papers (2023-03-04T04:43:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.