Block Induced Signature Generative Adversarial Network (BISGAN): Signature Spoofing Using GANs and Their Evaluation
- URL: http://arxiv.org/abs/2410.06041v2
- Date: Fri, 11 Oct 2024 08:14:58 GMT
- Title: Block Induced Signature Generative Adversarial Network (BISGAN): Signature Spoofing Using GANs and Their Evaluation
- Authors: Haadia Amjad, Kilian Goeller, Steffen Seitz, Carsten Knoll, Naseer Bajwa, Ronald Tetzlaff, Muhammad Imran Malik,
- Abstract summary: Generative adversarial networks (GANs) learn from original and forged signatures to generate forged signatures.
This work focuses on creating a generator that produces forged samples that achieve a benchmark in spoofing signature verification systems.
- Score: 1.0177118388531325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning is actively being used in biometrics to develop efficient identification and verification systems. Handwritten signatures are a common subset of biometric data for authentication purposes. Generative adversarial networks (GANs) learn from original and forged signatures to generate forged signatures. While most GAN techniques create a strong signature verifier, which is the discriminator, there is a need to focus more on the quality of forgeries generated by the generator model. This work focuses on creating a generator that produces forged samples that achieve a benchmark in spoofing signature verification systems. We use CycleGANs infused with Inception model-like blocks with attention heads as the generator and a variation of the SigCNN model as the base Discriminator. We train our model with a new technique that results in 80% to 100% success in signature spoofing. Additionally, we create a custom evaluation technique to act as a goodness measure of the generated forgeries. Our work advocates generator-focused GAN architectures for spoofing data quality that aid in a better understanding of biometric data generation and evaluation.
Related papers
- Offline Signature Verification Based on Feature Disentangling Aided Variational Autoencoder [6.128256936054622]
Main tasks of signature verification systems include extracting features from signature images and training a classifier for classification.
The instances of skilled forgeries are often unavailable, when signature verification models are being trained.
This paper proposes a new signature verification method using a variational autoencoder (VAE) to extract features directly from signature images.
arXiv Detail & Related papers (2024-09-29T19:54:47Z) - Enhanced Bank Check Security: Introducing a Novel Dataset and Transformer-Based Approach for Detection and Verification [11.225067563482169]
We introduce a novel dataset specifically designed for signature verification on bank checks.
This dataset includes a variety of signature styles embedded within typical check elements.
We propose a novel approach for writer-independent signature verification using an object detection network.
arXiv Detail & Related papers (2024-06-20T14:42:14Z) - A secure and private ensemble matcher using multi-vault obfuscated templates [1.3518297878940662]
Generative AI has revolutionized modern machine learning by providing unprecedented realism, diversity, and efficiency in data generation.
Biometric template security and secure matching are among the most sought-after features of modern biometric systems.
This paper proposes a novel obfuscation method using Generative AI to enhance biometric template security.
arXiv Detail & Related papers (2024-04-08T05:18:39Z) - Securing Deep Generative Models with Universal Adversarial Signature [69.51685424016055]
Deep generative models pose threats to society due to their potential misuse.
In this paper, we propose to inject a universal adversarial signature into an arbitrary pre-trained generative model.
The proposed method is validated on the FFHQ and ImageNet datasets with various state-of-the-art generative models.
arXiv Detail & Related papers (2023-05-25T17:59:01Z) - Revealing Reliable Signatures by Learning Top-Rank Pairs [15.582774097442721]
Signature verification is a crucial practical documentation analysis task.
We propose a new method to learn "top-rank pairs" for writer-independent offline signature verification tasks.
arXiv Detail & Related papers (2022-03-17T08:20:19Z) - Fingerprinting Image-to-Image Generative Adversarial Networks [53.02510603622128]
Generative Adversarial Networks (GANs) have been widely used in various application scenarios.
This paper presents a novel fingerprinting scheme for the Intellectual Property protection of image-to-image GANs based on a trusted third party.
arXiv Detail & Related papers (2021-06-19T06:25:10Z) - Prototype-supervised Adversarial Network for Targeted Attack of Deep
Hashing [65.32148145602865]
deep hashing networks are vulnerable to adversarial examples.
We propose a novel prototype-supervised adversarial network (ProS-GAN)
To the best of our knowledge, this is the first generation-based method to attack deep hashing networks.
arXiv Detail & Related papers (2021-05-17T00:31:37Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z) - ScoreGAN: A Fraud Review Detector based on Multi Task Learning of
Regulated GAN with Data Augmentation [50.779498955162644]
We propose ScoreGAN for fraud review detection that makes use of both review text and review rating scores in the generation and detection process.
Results show that the proposed framework outperformed the existing state-of-the-art framework, namely FakeGAN, in terms of AP by 7%, and 5% on the Yelp and TripAdvisor datasets.
arXiv Detail & Related papers (2020-06-11T16:15:06Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
Generative Adversarial Networks (GANs) have shown great promise in modeling high dimensional data.
We introduce the Discriminator Contrastive Divergence, which is well motivated by the property of WGAN's discriminator.
We demonstrate the benefits of significant improved generation on both synthetic data and several real-world image generation benchmarks.
arXiv Detail & Related papers (2020-04-05T01:50:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.