Enforcing Interpretability in Time Series Transformers: A Concept Bottleneck Framework
- URL: http://arxiv.org/abs/2410.06070v1
- Date: Tue, 8 Oct 2024 14:22:40 GMT
- Title: Enforcing Interpretability in Time Series Transformers: A Concept Bottleneck Framework
- Authors: Angela van Sprang, Erman Acar, Willem Zuidema,
- Abstract summary: We develop a framework based on Concept Bottleneck Models to enforce interpretability of time series Transformers.
We modify the training objective to encourage a model to develop representations similar to predefined interpretable concepts.
We find that the model performance remains mostly unaffected, while the model shows much improved interpretability.
- Score: 2.8470354623829577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been a recent push of research on Transformer-based models for long-term time series forecasting, even though they are inherently difficult to interpret and explain. While there is a large body of work on interpretability methods for various domains and architectures, the interpretability of Transformer-based forecasting models remains largely unexplored. To address this gap, we develop a framework based on Concept Bottleneck Models to enforce interpretability of time series Transformers. We modify the training objective to encourage a model to develop representations similar to predefined interpretable concepts. In our experiments, we enforce similarity using Centered Kernel Alignment, and the predefined concepts include time features and an interpretable, autoregressive surrogate model (AR). We apply the framework to the Autoformer model, and present an in-depth analysis for a variety of benchmark tasks. We find that the model performance remains mostly unaffected, while the model shows much improved interpretability. Additionally, interpretable concepts become local, which makes the trained model easily intervenable. As a proof of concept, we demonstrate a successful intervention in the scenario of a time shift in the data, which eliminates the need to retrain.
Related papers
- Exploring Representations and Interventions in Time Series Foundation Models [17.224575072056627]
Time series foundation models (TSFMs) promise to be powerful tools for a wide range of applications.
Their internal representations and learned concepts are still not well understood.
This study investigates the structure and redundancy of representations across various TSFMs.
arXiv Detail & Related papers (2024-09-19T17:11:27Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
We propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens.
Although our proposed model employs a simple architecture, it offers compelling performance as shown in our experiments on several datasets for time series forecasting.
arXiv Detail & Related papers (2024-06-07T14:39:28Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Generative Hierarchical Temporal Transformer for Hand Pose and Action Modeling [67.94143911629143]
We propose a generative Transformer VAE architecture to model hand pose and action.
To faithfully model the semantic dependency and different temporal granularity of hand pose and action, we decompose the framework into two cascaded VAE blocks.
Results show that our joint modeling of recognition and prediction improves over isolated solutions.
arXiv Detail & Related papers (2023-11-29T05:28:39Z) - Interpreting and Controlling Vision Foundation Models via Text
Explanations [45.30541722925515]
We present a framework for interpreting vision transformer's latent tokens with natural language.
Our approach enables understanding of model visual reasoning procedure without needing additional model training or data collection.
arXiv Detail & Related papers (2023-10-16T17:12:06Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Two Steps Forward and One Behind: Rethinking Time Series Forecasting
with Deep Learning [7.967995669387532]
The Transformer is a highly successful deep learning model that has revolutionised the world of artificial neural networks.
We investigate the effectiveness of Transformer-based models applied to the domain of time series forecasting.
We propose a set of alternative models that are better performing and significantly less complex.
arXiv Detail & Related papers (2023-04-10T12:47:42Z) - Consistent Counterfactuals for Deep Models [25.1271020453651]
Counterfactual examples are used to explain predictions of machine learning models in key areas such as finance and medical diagnosis.
This paper studies the consistency of model prediction on counterfactual examples in deep networks under small changes to initial training conditions.
arXiv Detail & Related papers (2021-10-06T23:48:55Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.