Exploring Representations and Interventions in Time Series Foundation Models
- URL: http://arxiv.org/abs/2409.12915v2
- Date: Wed, 16 Oct 2024 23:08:08 GMT
- Title: Exploring Representations and Interventions in Time Series Foundation Models
- Authors: Michał Wiliński, Mononito Goswami, Nina Żukowska, Willa Potosnak, Artur Dubrawski,
- Abstract summary: Time series foundation models (TSFMs) promise to be powerful tools for a wide range of applications.
Their internal representations and learned concepts are still not well understood.
This study investigates the structure and redundancy of representations across various TSFMs.
- Score: 17.224575072056627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series foundation models (TSFMs) promise to be powerful tools for a wide range of applications. However, their internal representations and learned concepts are still not well understood. In this study, we investigate the structure and redundancy of representations across various TSFMs, examining the self-similarity of model layers within and across different model sizes. This analysis reveals block-like redundancy in the representations, which can be utilized for informed pruning to improve inference speed and efficiency. Additionally, we explore the concepts learned by these models - such as periodicity and trends - and how these can be manipulated through latent space steering to influence model behavior. Our experiments show that steering interventions can introduce new features, e.g., adding periodicity or trends to signals that initially lacked them. These findings underscore the value of representational analysis for optimizing models and demonstrate how conceptual steering offers new possibilities for more controlled and efficient time series analysis with TSFMs.
Related papers
- Analyzing Deep Transformer Models for Time Series Forecasting via Manifold Learning [4.910937238451485]
Transformer models have consistently achieved remarkable results in various domains such as natural language processing and computer vision.
Despite ongoing research efforts to better understand these models, the field still lacks a comprehensive understanding.
Time series data, unlike image and text information, can be more challenging to interpret and analyze.
arXiv Detail & Related papers (2024-10-17T17:32:35Z) - Enforcing Interpretability in Time Series Transformers: A Concept Bottleneck Framework [2.8470354623829577]
We develop a framework based on Concept Bottleneck Models to enforce interpretability of time series Transformers.
We modify the training objective to encourage a model to develop representations similar to predefined interpretable concepts.
We find that the model performance remains mostly unaffected, while the model shows much improved interpretability.
arXiv Detail & Related papers (2024-10-08T14:22:40Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - Understanding Self-attention Mechanism via Dynamical System Perspective [58.024376086269015]
Self-attention mechanism (SAM) is widely used in various fields of artificial intelligence.
We show that intrinsic stiffness phenomenon (SP) in the high-precision solution of ordinary differential equations (ODEs) also widely exists in high-performance neural networks (NN)
We show that the SAM is also a stiffness-aware step size adaptor that can enhance the model's representational ability to measure intrinsic SP.
arXiv Detail & Related papers (2023-08-19T08:17:41Z) - A Detailed Study of Interpretability of Deep Neural Network based Top
Taggers [3.8541104292281805]
Recent developments in explainable AI (XAI) allow researchers to explore the inner workings of deep neural networks (DNNs)
We explore interpretability of models designed to identify jets coming from top quark decay in high energy proton-proton collisions at the Large Hadron Collider (LHC)
Our studies uncover some major pitfalls of existing XAI methods and illustrate how they can be overcome to obtain consistent and meaningful interpretation of these models.
arXiv Detail & Related papers (2022-10-09T23:02:42Z) - Learning Differential Operators for Interpretable Time Series Modeling [34.32259687441212]
We propose a learning framework that can automatically obtain interpretable PDE models from sequential data.
Our model can provide valuable interpretability and achieve comparable performance to state-of-the-art models.
arXiv Detail & Related papers (2022-09-03T20:14:31Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models.
We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected.
arXiv Detail & Related papers (2022-04-25T19:06:48Z) - An empirical evaluation of attention-based multi-head models for
improved turbofan engine remaining useful life prediction [9.282239595143787]
A single unit (head) is the conventional input feature extractor in deep learning architectures trained on multivariate time series signals.
This work extends the conventional single-head deep learning models to a more robust form by developing context-specific heads.
arXiv Detail & Related papers (2021-09-04T01:13:47Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
We propose Explainable Matrix (ExMatrix), a novel visualization method for Random Forest (RF) interpretability.
It employs a simple yet powerful matrix-like visual metaphor, where rows are rules, columns are features, and cells are rules predicates.
ExMatrix applicability is confirmed via different examples, showing how it can be used in practice to promote RF models interpretability.
arXiv Detail & Related papers (2020-05-08T21:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.