E3STO: Orbital Inspired SE(3)-Equivariant Molecular Representation for Electron Density Prediction
- URL: http://arxiv.org/abs/2410.06119v1
- Date: Tue, 8 Oct 2024 15:20:33 GMT
- Title: E3STO: Orbital Inspired SE(3)-Equivariant Molecular Representation for Electron Density Prediction
- Authors: Ilan Mitnikov, Joseph Jacobson,
- Abstract summary: We introduce a novel SE(3)-equivariant architecture, drawing inspiration from Slater-Type Orbitals (STO)
Our approach offers an alternative functional form for learned orbital-like molecular representation.
We showcase the effectiveness of our method by achieving SOTA prediction accuracy of molecular electron density with 30-70% improvement over other work on Molecular Dynamics data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electron density prediction stands as a cornerstone challenge in molecular systems, pivotal for various applications such as understanding molecular interactions and conducting precise quantum mechanical calculations. However, the scaling of density functional theory (DFT) calculations is prohibitively expensive. Machine learning methods provide an alternative, offering efficiency and accuracy. We introduce a novel SE(3)-equivariant architecture, drawing inspiration from Slater-Type Orbitals (STO), to learn representations of molecular electronic structures. Our approach offers an alternative functional form for learned orbital-like molecular representation. We showcase the effectiveness of our method by achieving SOTA prediction accuracy of molecular electron density with 30-70\% improvement over other work on Molecular Dynamics data.
Related papers
- A Recipe for Charge Density Prediction [4.017525264569417]
Machine learning methods are promising in significantly accelerating charge density prediction.
We propose a recipe that can achieve both accuracy and scalability.
Our method achieves state-of-the-art accuracy while being more than an order of magnitude faster than existing methods.
arXiv Detail & Related papers (2024-05-29T17:07:24Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
arXiv Detail & Related papers (2023-06-15T23:39:07Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
We propose a novel Transformer architecture that takes nodes (atoms) and edges (bonds and nonbonding atom pairs) as inputs and models the interactions among them.
Moleformer achieves state-of-the-art on the initial state to relaxed energy prediction of OC20 and is very competitive in QM9 on predicting quantum chemical properties.
arXiv Detail & Related papers (2023-02-02T03:49:57Z) - 3D Infomax improves GNNs for Molecular Property Prediction [1.9703625025720701]
We propose pre-training a model to reason about the geometry of molecules given only their 2D molecular graphs.
We show that 3D pre-training provides significant improvements for a wide range of properties.
arXiv Detail & Related papers (2021-10-08T13:30:49Z) - Gaussian Moments as Physically Inspired Molecular Descriptors for
Accurate and Scalable Machine Learning Potentials [0.0]
We propose a machine learning method for constructing high-dimensional potential energy surfaces based on feed-forward neural networks.
The accuracy of the developed approach in representing both chemical and configurational spaces is comparable to the one of several established machine learning models.
arXiv Detail & Related papers (2021-09-15T16:46:46Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Multi-task learning for electronic structure to predict and explore
molecular potential energy surfaces [39.228041052681526]
We refine the OrbNet model to accurately predict energy, forces, and other response properties for molecules.
The model is end-to-end differentiable due to the derivation of analytic gradients for all electronic structure terms.
It is shown to be transferable across chemical space due to the use of domain-specific features.
arXiv Detail & Related papers (2020-11-05T06:48:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.