論文の概要: The Last Iterate Advantage: Empirical Auditing and Principled Heuristic Analysis of Differentially Private SGD
- arxiv url: http://arxiv.org/abs/2410.06186v1
- Date: Thu, 10 Oct 2024 17:06:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 10:50:51.503218
- Title: The Last Iterate Advantage: Empirical Auditing and Principled Heuristic Analysis of Differentially Private SGD
- Title(参考訳): 最後の反復的アドバンテージ:異なる私的SGDの実証的監査と原理的ヒューリスティック分析
- Authors: Thomas Steinke, Milad Nasr, Arun Ganesh, Borja Balle, Christopher A. Choquette-Choo, Matthew Jagielski, Jamie Hayes, Abhradeep Guha Thakurta, Adam Smith, Andreas Terzis,
- Abstract要約: ノイズカットされた勾配勾配(DP-SGD)の簡易なプライバシー解析法を提案する。
各種トレーニング手順に適用したプライバシー監査の結果を予測できることを実験的に示す。
既存のプライバシー監査攻撃は、視覚と言語の両方のタスクにおける分析によって制限されていることを実証的に示しています。
- 参考スコア(独自算出の注目度): 46.71175773861434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a simple heuristic privacy analysis of noisy clipped stochastic gradient descent (DP-SGD) in the setting where only the last iterate is released and the intermediate iterates remain hidden. Namely, our heuristic assumes a linear structure for the model. We show experimentally that our heuristic is predictive of the outcome of privacy auditing applied to various training procedures. Thus it can be used prior to training as a rough estimate of the final privacy leakage. We also probe the limitations of our heuristic by providing some artificial counterexamples where it underestimates the privacy leakage. The standard composition-based privacy analysis of DP-SGD effectively assumes that the adversary has access to all intermediate iterates, which is often unrealistic. However, this analysis remains the state of the art in practice. While our heuristic does not replace a rigorous privacy analysis, it illustrates the large gap between the best theoretical upper bounds and the privacy auditing lower bounds and sets a target for further work to improve the theoretical privacy analyses. We also empirically support our heuristic and show existing privacy auditing attacks are bounded by our heuristic analysis in both vision and language tasks.
- Abstract(参考訳): 本稿では,最後のイテレーションのみを解放し,中間イテレーションのみを隠蔽する条件下で,ノイズの多いクリッピング確率勾配降下(DP-SGD)の単純ヒューリスティックなプライバシー解析を提案する。
すなわち、我々のヒューリスティックはモデルに対する線形構造を仮定する。
本研究では, 各種トレーニング手順に適用したプライバシー監査の結果を, ヒューリスティックに予測できることを実験的に示す。
したがって、トレーニングの前に、最終的なプライバシー漏洩を大まかに見積もることができる。
私たちはまた、プライバシー漏洩を過小評価する人工的な反例を提供することによって、ヒューリスティックの限界を調査します。
DP-SGDの標準構成に基づくプライバシ分析は、敵がすべての中間イテレートにアクセスできることを効果的に仮定する。
しかし、この分析はいまだに最先端のものである。
我々のヒューリスティックは厳密なプライバシー分析に取って代わるものではないが、最高の理論上の境界と低い境界を監査するプライバシーの間の大きなギャップを描いており、理論上のプライバシー分析を改善するためのさらなる作業の目標を設定している。
私たちはまた、ヒューリスティックを実証的にサポートし、既存のプライバシー監査攻撃が、視覚と言語の両方のタスクにおけるヒューリスティックな分析によって制限されていることを示す。
関連論文リスト
- Auditing $f$-Differential Privacy in One Run [43.34594422920125]
実証監査は、プライバシ保護アルゴリズムの実装におけるいくつかの欠陥をキャッチする手段として登場した。
本稿では,メカニズムのプライバシを効果的に評価できる,厳密で効率的な監査手順と分析法を提案する。
論文 参考訳(メタデータ) (2024-10-29T17:02:22Z) - Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
フェデレートラーニング(Federated Learning, FL)は、ローカルプライバシを重視した効率的な協調トレーニングパラダイムである。
ディファレンシャルプライバシ(DP)は、私的保護の信頼性を捕捉し、保証するための古典的なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:22:21Z) - Tighter Privacy Auditing of DP-SGD in the Hidden State Threat Model [40.4617658114104]
本研究では,攻撃者が最終モデルにのみアクセスでき,中間更新の可視性のない脅威モデルに焦点を当てる。
実験の結果,本手法は隠蔽状態モデル監査における従来の試みより一貫して優れていたことがわかった。
我々の結果は、この脅威モデル内で達成可能なプライバシー保証の理解を促進する。
論文 参考訳(メタデータ) (2024-05-23T11:38:38Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
我々は、最悪の近傍データセット上でのモデル分布間のKLばらつきのプライバシー境界を証明した。
このKLプライバシー境界は、トレーニング中にモデルパラメータに対して期待される2乗勾配ノルムによって決定される。
論文 参考訳(メタデータ) (2023-10-31T16:13:22Z) - Tight Auditing of Differentially Private Machine Learning [77.38590306275877]
プライベート機械学習では、既存の監査メカニズムは厳格である。
彼らは不確実な最悪の仮定の下でのみ厳密な見積もりを行う。
我々は、自然(逆向きではない)データセットの厳密なプライバシー推定を得られる改善された監査スキームを設計する。
論文 参考訳(メタデータ) (2023-02-15T21:40:33Z) - On the Statistical Complexity of Estimation and Testing under Privacy Constraints [17.04261371990489]
差分プライバシー下での統計的テストのパワーをプラグアンドプレイ方式で特徴付ける方法を示す。
プライバシ保護のレベルが非常に高い場合にのみ、プライバシの維持が顕著なパフォーマンス低下をもたらすことを示す。
最後に,プライベート凸解法であるDP-SGLDアルゴリズムを高信頼度で最大推定できることを示した。
論文 参考訳(メタデータ) (2022-10-05T12:55:53Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Smoothed Differential Privacy [55.415581832037084]
微分プライバシー(DP)は、最悪のケース分析に基づいて広く受け入れられ、広く適用されているプライバシーの概念である。
本稿では, 祝賀されたスムーズな解析の背景にある最悪の平均ケースのアイデアに倣って, DPの自然な拡張を提案する。
サンプリング手順による離散的なメカニズムはDPが予測するよりもプライベートであるのに対して,サンプリング手順による連続的なメカニズムはスムーズなDP下では依然としてプライベートではないことが証明された。
論文 参考訳(メタデータ) (2021-07-04T06:55:45Z) - Differential Privacy Dynamics of Langevin Diffusion and Noisy Gradient
Descent [10.409652277630132]
我々はLangevin拡散におけるプライバシー損失のダイナミクスをモデル化し、ノイズ勾配降下アルゴリズムに拡張する。
プライバシーの損失は指数関数的に速く収束する。
論文 参考訳(メタデータ) (2021-02-11T05:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。