論文の概要: Neural-Bayesian Program Learning for Few-shot Dialogue Intent Parsing
- arxiv url: http://arxiv.org/abs/2410.06190v1
- Date: Tue, 8 Oct 2024 16:54:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 10:41:07.282777
- Title: Neural-Bayesian Program Learning for Few-shot Dialogue Intent Parsing
- Title(参考訳): Few-shot Dialogue Intent Parsingのためのニューラルベイジアンプログラム学習
- Authors: Mengze Hong, Di Jiang, Yuanfeng Song, Chen Jason Zhang,
- Abstract要約: 本稿では,対話・対話型プログラム(DI-)というニューラルベイズ学習モデルを提案する。
DI-はデータハングリー設定下でのインテント解析を専門とし、有望なパフォーマンス改善を提供する。
実験により、DI-は最先端のディープラーニングモデルより優れており、産業用アプリケーションに実用的な利点があることが示された。
- 参考スコア(独自算出の注目度): 14.90367428035125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing importance of customer service in contemporary business, recognizing the intents behind service dialogues has become essential for the strategic success of enterprises. However, the nature of dialogue data varies significantly across different scenarios, and implementing an intent parser for a specific domain often involves tedious feature engineering and a heavy workload of data labeling. In this paper, we propose a novel Neural-Bayesian Program Learning model named Dialogue-Intent Parser (DI-Parser), which specializes in intent parsing under data-hungry settings and offers promising performance improvements. DI-Parser effectively utilizes data from multiple sources in a "Learning to Learn" manner and harnesses the "wisdom of the crowd" through few-shot learning capabilities on human-annotated datasets. Experimental results demonstrate that DI-Parser outperforms state-of-the-art deep learning models and offers practical advantages for industrial-scale applications.
- Abstract(参考訳): 現代ビジネスにおけるカスタマーサービスの重要性の高まりに伴い、企業の戦略的成功には、サービス対話の背景にある意図を認識することが不可欠になっている。
しかし、対話データの性質は様々なシナリオで大きく異なり、特定のドメインに対してインテントパーサを実装するには、面倒な機能エンジニアリングと大量のデータラベリングが伴うことが多い。
本稿では,データ・ハングリー設定下での意図解析を専門とし,有望な性能向上を実現するニューラル・ベイズ型プログラム学習モデルであるDI-Parserを提案する。
DI-Parserは、"ラーニング・トゥ・ラーニング"の方法で複数のソースからのデータを効果的に利用し、"群衆の知恵"を活用して、人間の注釈付きデータセットで数ショットの学習機能を実現する。
実験により、DI-Parserは最先端のディープラーニングモデルより優れており、産業規模のアプリケーションに実用的な利点があることが示された。
関連論文リスト
- Intent-Aware Dialogue Generation and Multi-Task Contrastive Learning for Multi-Turn Intent Classification [6.459396785817196]
Chain-of-Intentは、セルフプレイを通じて意図駆動の会話を生成する。
MINT-CLはマルチタスクコントラスト学習を用いたマルチターンインテント分類のためのフレームワークである。
MINT-Eは多言語対応のマルチターンeコマース対話コーパスである。
論文 参考訳(メタデータ) (2024-11-21T15:59:29Z) - Evolving Knowledge Distillation with Large Language Models and Active
Learning [46.85430680828938]
大規模言語モデル(LLM)は、様々なNLPタスクにまたがる顕著な機能を示している。
従来の研究は、注釈付きデータを生成してLPMの知識をより小さなモデルに抽出しようと試みてきた。
EvoKD: Evolving Knowledge Distillationを提案する。これは、アクティブラーニングの概念を利用して、大規模言語モデルを用いたデータ生成のプロセスをインタラクティブに強化する。
論文 参考訳(メタデータ) (2024-03-11T03:55:24Z) - Weakly Supervised Data Augmentation Through Prompting for Dialogue
Understanding [103.94325597273316]
本稿では,弱教師付きフィルタを適用して拡張品質を反復する手法を提案する。
我々は、デイリーダイアログにおける感情と行動の分類タスクと、Facebook Multilingual Task-Oriented Dialogueにおける意図の分類タスクについて評価した。
特にDailyDialogでは、真理データの10%を使用して、100%のデータを使用する現在の最先端モデルよりも優れています。
論文 参考訳(メタデータ) (2022-10-25T17:01:30Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Data Augmentation with Paraphrase Generation and Entity Extraction for
Multimodal Dialogue System [9.912419882236918]
我々は,小学生が基本数学の概念を学ぶための多モーダル対話システムに向けて研究している。
本研究では,音声対話システムパイプラインの自然言語理解モジュールのパラフレーズ生成によるデータ拡張の可能性を探る。
我々は,小型シードデータを用いたモデル・イン・ザ・ループ(MITL)戦略のパラフレーズ化が,インテント認識タスクの性能改善をもたらす有望なアプローチであることを示した。
論文 参考訳(メタデータ) (2022-05-09T02:21:20Z) - On the Use of External Data for Spoken Named Entity Recognition [40.93448412171246]
近年の自己教師型音声表現の進歩により,ラベル付きデータに制限のある学習モデルを考えることが可能になった。
自己学習、知識蒸留、トランスファーラーニングなど、さまざまなアプローチを採用し、エンドツーエンドモデルとパイプラインアプローチの両方に適用性を検討する。
論文 参考訳(メタデータ) (2021-12-14T18:49:26Z) - Self-training Improves Pre-training for Few-shot Learning in
Task-oriented Dialog Systems [47.937191088981436]
大規模事前訓練型言語モデルでは、ToDで数発の学習を行う上で有望な結果が示されている。
本稿では,より強力な学生モデルを訓練するために,最も自信のないラベル付きデータを反復的にラベル付けする自己学習手法を提案する。
目的分類,ダイアログ状態追跡,ダイアログアクト予測,応答選択など,ToDの4つの下流タスクに関する実験と分析を行った。
論文 参考訳(メタデータ) (2021-08-28T07:22:06Z) - $C^3$: Compositional Counterfactual Contrastive Learning for
Video-grounded Dialogues [97.25466640240619]
映像対話システムの目的は、映像理解と対話理解を統合し、対話と映像コンテキストの両方に関連する応答を生成することである。
既存のアプローチのほとんどはディープラーニングモデルを採用しており、比較的小さなデータセットが利用可能であることを考えると、優れたパフォーマンスを実現している。
本稿では,映像対話における実例と反実例の対比学習を開発するために,合成対実的コントラスト学習の新たなアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-16T16:05:27Z) - Reinforced Iterative Knowledge Distillation for Cross-Lingual Named
Entity Recognition [54.92161571089808]
言語間NERは、知識をリッチリソース言語から低リソース言語に転送する。
既存の言語間NERメソッドは、ターゲット言語でリッチなラベル付けされていないデータをうまく利用しない。
半教師付き学習と強化学習のアイデアに基づく新しいアプローチを開発する。
論文 参考訳(メタデータ) (2021-06-01T05:46:22Z) - DialSumm: A Real-Life Scenario Dialogue Summarization Dataset [16.799104478351914]
大規模ラベル付き対話要約データセットであるDialSummを提案する。
最新のニューラルアセンブラを用いたDialSummの実証分析を行います。
論文 参考訳(メタデータ) (2021-05-14T11:12:40Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
質問に対する応答のきめ細かい品質をモデル化するマルチレベルコントラスト学習パラダイムを提案する。
Rank-aware (RC) ネットワークはマルチレベルコントラスト最適化の目的を構築するために設計されている。
本研究では,知識推論(KI)コンポーネントを構築し,学習中の参照からキーワードの知識を抽出し,そのような情報を活用して情報的単語の生成を促す。
論文 参考訳(メタデータ) (2020-09-19T02:41:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。