A Timeline and Analysis for Representation Plasticity in Large Language Models
- URL: http://arxiv.org/abs/2410.06225v1
- Date: Tue, 8 Oct 2024 17:34:15 GMT
- Title: A Timeline and Analysis for Representation Plasticity in Large Language Models
- Authors: Akshat Kannan,
- Abstract summary: This paper aims to understand how "honesty" and model plasticity evolve by applying steering extracted at different fine-tuning stages.
The findings are pivotal, showing that while early steering exhibits high plasticity, later stages have a surprisingly responsive critical window.
These insights greatly contribute to the field of AI transparency, addressing a pressing lack of efficiency limiting our ability to effectively steer model behavior.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to steer AI behavior is crucial to preventing its long term dangerous and catastrophic potential. Representation Engineering (RepE) has emerged as a novel, powerful method to steer internal model behaviors, such as "honesty", at a top-down level. Understanding the steering of representations should thus be placed at the forefront of alignment initiatives. Unfortunately, current efforts to understand plasticity at this level are highly neglected. This paper aims to bridge the knowledge gap and understand how LLM representation stability, specifically for the concept of "honesty", and model plasticity evolve by applying steering vectors extracted at different fine-tuning stages, revealing differing magnitudes of shifts in model behavior. The findings are pivotal, showing that while early steering exhibits high plasticity, later stages have a surprisingly responsive critical window. This pattern is observed across different model architectures, signaling that there is a general pattern of model plasticity that can be used for effective intervention. These insights greatly contribute to the field of AI transparency, addressing a pressing lack of efficiency limiting our ability to effectively steer model behavior.
Related papers
- Tradeoffs Between Alignment and Helpfulness in Language Models with Representation Engineering [15.471566708181824]
We study the tradeoff between the increase in alignment and decrease in helpfulness of the model.
Under the conditions of our framework, alignment can be guaranteed with representation engineering.
We show that helpfulness is harmed quadratically with the norm of the representation engineering vector.
arXiv Detail & Related papers (2024-01-29T17:38:14Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
We introduce a comprehensive data-driven framework aimed at enhancing the modeling of physical systems.
As a demonstrative application, we pursue the modeling of cathodic electrophoretic deposition (EPD), commonly known as e-coating.
arXiv Detail & Related papers (2024-01-16T14:58:21Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models.
Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels.
We present an insightful physics-inspired approach named PED to address these challenges.
arXiv Detail & Related papers (2023-08-29T07:15:57Z) - Interpretable Computer Vision Models through Adversarial Training:
Unveiling the Robustness-Interpretability Connection [0.0]
Interpretability is as essential as robustness when we deploy the models to the real world.
Standard models, compared to robust are more susceptible to adversarial attacks, and their learned representations are less meaningful to humans.
arXiv Detail & Related papers (2023-07-04T13:51:55Z) - PLASTIC: Improving Input and Label Plasticity for Sample Efficient
Reinforcement Learning [54.409634256153154]
In Reinforcement Learning (RL), enhancing sample efficiency is crucial.
In principle, off-policy RL algorithms can improve sample efficiency by allowing multiple updates per environment interaction.
Our study investigates the underlying causes of this phenomenon by dividing plasticity into two aspects.
arXiv Detail & Related papers (2023-06-19T06:14:51Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
We propose Iso-Dream++, a model-based reinforcement learning approach.
We perform policy optimization based on the decoupled latent imaginations.
This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild.
arXiv Detail & Related papers (2023-03-27T02:55:56Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - On the Real-World Adversarial Robustness of Real-Time Semantic
Segmentation Models for Autonomous Driving [59.33715889581687]
The existence of real-world adversarial examples (commonly in the form of patches) poses a serious threat for the use of deep learning models in safety-critical computer vision tasks.
This paper presents an evaluation of the robustness of semantic segmentation models when attacked with different types of adversarial patches.
A novel loss function is proposed to improve the capabilities of attackers in inducing a misclassification of pixels.
arXiv Detail & Related papers (2022-01-05T22:33:43Z) - Unveiling the role of plasticity rules in reservoir computing [0.0]
Reservoir Computing (RC) is an appealing approach in Machine Learning.
We analyze the role that plasticity rules play on the changes that lead to a better performance of RC.
arXiv Detail & Related papers (2021-01-14T19:55:30Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.