論文の概要: SymDiff: Equivariant Diffusion via Stochastic Symmetrisation
- arxiv url: http://arxiv.org/abs/2410.06262v1
- Date: Tue, 8 Oct 2024 18:02:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 10:21:03.841187
- Title: SymDiff: Equivariant Diffusion via Stochastic Symmetrisation
- Title(参考訳): SymDiff: 確率的対称性による等変拡散
- Authors: Leo Zhang, Kianoosh Ashouritaklimi, Yee Whye Teh, Rob Cornish,
- Abstract要約: 本稿では,最近導入された対称性の枠組みを用いて同変拡散モデルを構築する手法を提案する。
SymDiffは、サンプリング時にデプロイされる学習データ拡張に似ており、軽量で、計算効率が高く、任意のオフザシェルフモデル上に実装が容易である。
生成モデルへの対称性の応用としてはこれが初めてであり、この領域におけるそのポテンシャルがより一般的に示唆されている。
- 参考スコア(独自算出の注目度): 28.614292092399563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose SymDiff, a novel method for constructing equivariant diffusion models using the recently introduced framework of stochastic symmetrisation. SymDiff resembles a learned data augmentation that is deployed at sampling time, and is lightweight, computationally efficient, and easy to implement on top of arbitrary off-the-shelf models. Notably, in contrast to previous work, SymDiff typically does not require any neural network components that are intrinsically equivariant, avoiding the need for complex parameterizations and the use of higher-order geometric features. Instead, our method can leverage highly scalable modern architectures as drop-in replacements for these more constrained alternatives. We show that this additional flexibility yields significant empirical benefit on $\mathrm{E}(3)$-equivariant molecular generation. To the best of our knowledge, this is the first application of symmetrisation to generative modelling, suggesting its potential in this domain more generally.
- Abstract(参考訳): 我々は最近導入された確率的対称性の枠組みを用いて同変拡散モデルを構築する新しい方法であるSymDiffを提案する。
SymDiffは、サンプリング時にデプロイされる学習データ拡張に似ており、軽量で、計算効率が高く、任意のオフザシェルフモデル上に実装が容易である。
特に、以前の研究とは対照的に、SymDiffは本質的に同変のニューラルネットワークコンポーネントを必要とせず、複雑なパラメータ化や高階幾何学的特徴の使用を避ける。
代わりに、我々の手法は、より制約のある代替品のドロップイン代替品として、高度にスケーラブルなモダンアーキテクチャを利用することができる。
この付加的な柔軟性は、$\mathrm{E}(3)$-equivariantな分子生成に対して大きな経験的利益をもたらすことを示す。
我々の知る限りでは、これは生成的モデリングへの対称性の最初の応用であり、この領域におけるそのポテンシャルをより一般的に示唆している。
関連論文リスト
- Equivariant score-based generative models provably learn distributions with symmetries efficiently [7.90752151686317]
実験的な研究により、対称性を生成モデルに組み込むことで、より優れた一般化とサンプリング効率が得られることが示されている。
我々は,ある群対称性に対して不変な分布を学習するためのスコアベース生成モデル(SGM)の最初の理論的解析と保証を提供する。
論文 参考訳(メタデータ) (2024-10-02T05:14:28Z) - Approximately Equivariant Neural Processes [47.14384085714576]
実世界のデータをモデル化する場合、学習問題は必ずしも同変ではなく、概ね同変であることが多い。
これを達成するための現在のアプローチは、通常任意のアーキテクチャや対称性群に対して最初から適用することはできない。
我々は、既存の同変アーキテクチャを用いてこれを実現するための一般的なアプローチを開発する。
論文 参考訳(メタデータ) (2024-06-19T12:17:14Z) - A Generative Model of Symmetry Transformations [44.87295754993983]
我々はデータの近似対称性を明示的に捉えることを目的とした生成モデルを構築した。
我々は、アフィンおよび色変換の下で対称性を捕捉する能力を実証的に実証した。
論文 参考訳(メタデータ) (2024-03-04T11:32:18Z) - Symmetry Breaking and Equivariant Neural Networks [17.740760773905986]
我々は「緩和された同注入」という新しい概念を導入する。
我々は、この緩和を同変多層パーセプトロン(E-MLP)に組み込む方法を示す。
対称性の破れの関連性は、様々な応用領域で議論される。
論文 参考訳(メタデータ) (2023-12-14T15:06:48Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance [16.49488981364657]
群対称性を持つ学習関数における同変アーキテクチャの限界を克服する新しい枠組みを提案する。
我々は、不変量や変圧器のような任意の基底モデルを使用し、それを与えられた群に同変するように対称性付けする。
実証実験は、調整された同変アーキテクチャに対する競争結果を示す。
論文 参考訳(メタデータ) (2023-06-05T13:40:54Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Oracle-Preserving Latent Flows [58.720142291102135]
我々はラベル付きデータセット全体にわたって複数の非自明な連続対称性を同時に発見するための方法論を開発する。
対称性変換と対応するジェネレータは、特別に構築された損失関数で訓練された完全連結ニューラルネットワークでモデル化される。
この研究における2つの新しい要素は、縮小次元の潜在空間の使用と、高次元のオラクルに関して不変な変換への一般化である。
論文 参考訳(メタデータ) (2023-02-02T00:13:32Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
正規化を行うために小さなニューラルネットワークを学習することは、事前定義を使用することよりも優れていることを示す。
実験の結果,正準化関数の学習は多くのタスクで同変関数を学習する既存の手法と競合することがわかった。
論文 参考訳(メタデータ) (2022-11-11T21:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。